我的编程空间,编程开发者的网络收藏夹
学习永远不晚

大数据Hadoop之——数据仓库Hive

短信预约 信息系统项目管理师 报名、考试、查分时间动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

大数据Hadoop之——数据仓库Hive

大数据Hadoop之——数据仓库Hive

目录
  • 一、概述
  • 二、Hive优点与使用场景
    • 1)优点
    • 2)使用场景
  • 三、Hive架构
    • 1)服务端组件
      • 1、Driver组件
      • 2、Metastore组件
      • 3、Thrift服务
    • 2)客户端组件
      • 1、CLI
      • 2、Thrift客户端
      • 3、WEBGUI
    • 3)Metastore详解
  • 四、Hive的工作原理
  • 五、安装
    • 1)local模式(内嵌derby)
      • 1、下载hive
      • 2、配置环境变量
      • 3、启动验证
    • 2)单用户模式(mysql)
      • 1、安装mysql数据库
      • 2、解决Hive与Hadoop之间guava版本的差异
      • 3、下载对应版本的mysql驱动包
      • 4、配置
      • 5、初始化元数据
      • 6、启动验证
    • 3)多用户模式(mysql)
      • 在hadoop-node2部署客户端
  • 五、Hive客户端
    • 1)Hive CLI
      • 1、查看帮助
      • 2、交互式命令行
      • 3、非交互式
      • 4、接SQL文件非交互式执行SQL脚本
      • 5、配置Hive变量
    • 2)Beeline CLI(推荐)
      • 1、查看帮助
      • 2、常用参数
      • 3、通过代理用户连接 Hive(不需要配置用户名和密码)
    • 3)DataGrip客户端
  • 六、实战操作
    • 1)建库,建表
    • 2)查看
    • 3)注释COMMENT中文乱码解决
    • 4)Load加载数据(推荐)
    • 5)Insert添加数据(特别慢,不推荐)

一、概述

Hive是基于Hadoop的一个数据仓库(Data Aarehouse,简称数仓、DW,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。是用于存储、分析、报告的数据系统

在Hadoop生态系统中,HDFS用于存储数据,Yarn用于资源管理,MapReduce用于数据处理,而Hive是构建在Hadoop之上的数据仓库,包括以下方面:

  • 使用HQL作为查询接口;
  • 使用HDFS存储;
  • 使用MapReduce或其它计算框架计算;
  • 执行程序运行在Yarn上。

Hive的本质是:将Hive SQL转化成MapReduce程序,其灵活性和扩展性比较好,支持UDF,自定义存储格式等;适合离线数据处理。

Hive相关网站

官网:http://hive.apache.org
文档:https://cwiki.apache.org/confluence/display/Hive/GettingStarted
https://cwiki.apache.org/confluence/display/Hive/Home
下载:http://archive.apache.org/dist/hive
Github地址:https://github.com/apache/hive

二、Hive优点与使用场景

1)优点

  • 操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手);
  • 避免了去写MapReduce,减少开发人员的学习成本;
  • 统一的元数据管理,可与impala/spark等共享元数据;
  • 易扩展(HDFS+MapReduce:可以扩展集群规模;支持自定义函数);
  • 数据的离线处理;比如:日志分析,海量结构化数据离线分析。

2)使用场景

  • Hive的执行延迟比较高,因此hive常用于数据分析的,对实时性要求 不高的场合;
  • Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执 行延迟比较高。

三、Hive架构

由上图可知,hadoop和mapreduce是hive架构的根基。Hive架构包括如下组件:CLI(command line interface)、JDBC/ODBC、Thrift Server、WEB GUI、metastore和Driver(Complier、Optimizer和Executor),这些组件我可以分为两大类:服务端组件和客户端组件。

1)服务端组件

1、Driver组件

该组件包括Complier、Optimizer和Executor,它的作用是将我们写的HiveQL(类SQL)语句进行解析、编译优化,生成执行计划,然后调用底层的mapreduce计算框架。

2、Metastore组件

Metastore是元数据服务组件,这个组件存储hive的元数据,hive的元数据存储在关系数据库里,hive支持的关系数据库有derby、mysql。元数据对于hive十分重要,因此hive支持把metastore服务独立出来,安装到远程的服务器集群里,从而解耦hive服务和metastore服务,保证hive运行的健壮性。

3、Thrift服务

Thrift是facebook开发的一个软件框架,它用来进行可扩展且跨语言的服务的开发,hive集成了该服务,能让不同的编程语言调用hive的接口。

2)客户端组件

1、CLI

command line interface,命令行接口。

2、Thrift客户端

上面的架构图里没有写上Thrift客户端,但是hive架构的许多客户端接口是建立在Thrift客户端之上,包括JDBC和ODBC接口。

3、WEBGUI

hive客户端提供了一种通过网页的方式访问hive所提供的服务。这个接口对应hive的hwi组件(hive web interface),使用前要启动hwi服务。

3)Metastore详解

  • Hive的metastore组件是hive元数据集中存放地。
  • Metastore组件包括两个部分:metastore服务和后台数据的存储。
  • 后台数据存储的介质就是关系数据库,例如hive默认的嵌入式磁盘数据库derby,还有mysql数据库。
  • Metastore服务是建立在后台数据存储介质之上,并且可以和hive服务进行交互的服务组件,默认情况下,metastore服务和hive服务是安装在一起的,运行在同一个进程当中。
  • 我也可以把metastore服务从hive服务里剥离出来,metastore独立安装在一个集群里,hive远程调用metastore服务,这样我们可以把元数据这一层放到防火墙之后,客户端访问hive服务,就可以连接到元数据这一层,从而提供了更好的管理性和安全保障。
  • 使用远程的metastore服务,可以让metastore服务和hive服务运行在不同的进程里,这样也保证了hive的稳定性,提升了hive服务的效率。

四、Hive的工作原理


简单的将就是说sql或者HQL(Hive SQL)会被Hive解释,编译,优化并生成查询计划,一般情况而言查询计划会被转化为MapReduce任务进而执行。

具体工作过程如下:

  • 词法分析/语法分析

使用antlr将SQL语句解析成抽象语法树(AST)

  • 语义分析

从Megastore获取模式信息,验证SQL语句中队表名,列名,以及数据类型的检查和隐式转换,以及Hive提供的函数和用户自定义的函数(UDF/UAF)

  • 逻辑计划生成

生成逻辑计划--算子树

  • 逻辑计划优化

对算子树进行优化,包括列剪枝,分区剪枝,谓词下推等

  • 物理计划生成

将生成包含由MapReduce任务组成的DAG(Directed acyclic graph:有向无环图)的物理计划

  • 物理计划执行

将DAG发送到Hadoop集群进行执行

  • 最后把查询结果返回

【温馨提示】新版本的Hive也支持使用Tez或Spark等作为执行引擎。

五、安装

1)local模式(内嵌derby)

内嵌derby数据库(一个会话连接,常用于简单测试)derby是个in-memory的数据库。


安装方法如下:

1、下载hive

地址:http://archive.apache.org/dist/hive

$ cd /opt/bigdata/hadoop/software
# 下载
$ wget http://archive.apache.org/dist/hive/hive-3.1.2/apache-hive-3.1.2-bin.tar.gz
# 解压
$ tar -zxvf apache-hive-3.1.2-bin.tar.gz -C /opt/bigdata/hadoop/server/

2、配置环境变量

$ cd /opt/bigdata/hadoop/server/apache-hive-3.1.2-bin/conf/
# 把模板文件复制一份
$ cp hive-env.sh.template hive-env.sh
  • 在/etc/profile文件中追加如下内容:
export HIVE_HOME=/opt/bigdata/hadoop/server/apache-hive-3.1.2-bin
export PATH=$HIVE_HOME/bin:$PATH

source 加载生效

$ source /etc/profile

  • hive-site.xml,这个文件不存在,创建文件,内容如下:
# 创建在hdfs存储目录,下面配置文件会用到
$ hadoop fs -mkdir -p /user/hive/warehouse
# 切到hive conf目录
$ cd /opt/bigdata/hadoop/server/apache-hive-3.1.2-bin/conf

hive-site.xml



  
  
  javax.jdo.option.ConnectionURL  
  jdbc:derby:;databaseName=metastore_db;create=true  
  
   
  
  javax.jdo.option.ConnectionDriverName  
  org.apache.derby.jdbc.EmbeddedDriver  
  
   
  
  hive.metastore.local  
  true  
  

  
  hive.metastore.schema.verification  
  false  
  


  
  hive.metastore.warehouse.dir  
  /user/hive/warehouse  
  

    datanucleus.schema.autoCreateAll
    true



  • hive-env.sh #底部追加两行
export HADOOP_HOME=/opt/bigdata/hadoop/server/hadoop-3.3.1
export HIVE_CONF_DIR=/opt/bigdata/hadoop/server/apache-hive-3.1.2-bin/conf
export HIV_AUX_JARS_PATH=/opt/bigdata/hadoop/server/apache-hive-3.1.2-bin/lib

3、启动验证

$ hive
# 查看数据库
hive> show databases;
# 查看当前库(默认是default库)的表
hive> show tables;
# 查看当前库
hive> select current_database();


查看当前目录,发现多了derby文件和一个metastore_db目录

【注意】使用derby存储方式时,运行hive会在当前目录生成一个derby文件和一个metastore_db目录。这种存储方式的弊端是在同一个目录下同时只能有一个hive客户端能使用数据库,否则会提示如下错误:

2)单用户模式(mysql)

该模式下就是客户端和服务端在一个节点上,使用关系型数据库(mysql、oracle等带jdbc驱动的数据库)来对元数据进行存储。这里使用mysql,mysql可以在安装同一台机器上,也可以在远程机器上。


hive包上面已经下载了,这里就不重复了。

1、安装mysql数据库

  • yum源安装
$ yum -y install mysql-server
# 启动数据库
$ systemctl start mysqld
$ systemctl status mysqld
# 开机自启动
$ systemctl enable mysqld
  • 连接mysql8.x授权(无密码,直接进入)
$ mysql
# 创建可远程连接用户
CREATE USER "root"@"%" IDENTIFIED BY "123456";
#  修改用户密码
ALTER USER "root"@"%" IDENTIFIED WITH mysql_native_password BY "123456";
# 授权给用户
GRANT ALL PRIVILEGES ON *.* TO "root"@"%"  WITH GRANT OPTION;
# 查看
select user,host from mysql.user;
show grants for "root"@"%";
# 权限撤回,这里不执行,了解即可
revoke all privileges on *.* from "root"@"%";


通过密码登录mysql

$ mysql -uroot -h 192.168.0.113 -p
输入密码:123456

2、解决Hive与Hadoop之间guava版本的差异

$ cd /opt/bigdata/hadoop/server
$ ls -l apache-hive-3.1.2-bin/lib/guava-*.jar
$ ls -l hadoop-3.3.1/share/hadoop/common/lib/guava-*.jar
# 删除hive中guava低版本
$ rm -f apache-hive-3.1.2-bin/lib/guava-*.jar
# copy hadoop中的guava到hive
$ cp hadoop-3.3.1/share/hadoop/common/lib/guava-*.jar apache-hive-3.1.2-bin/lib/
$ ls -l apache-hive-3.1.2-bin/lib/guava-*.jar

3、下载对应版本的mysql驱动包

# 查看mysql版本
$ mysql --version


这里的mysql版本是8.0.26,所以就得下载对应版本的驱动包
官网下载地址:https://dev.mysql.com/downloads/

如果小伙伴的mysql版本(8.0.26)跟我的一样,也可以使用百度的地址下载:

链接:https://pan.baidu.com/s/1uczpnH0PHxbq258vMoYlgA
提取码:8888

# 包放在这个目录下
$ cd /opt/bigdata/hadoop/software
# 解压
$ unzip mysql-connector-java-8.0.26.zip

把对应的驱动包copy到hive lib目录下

$ cp mysql-connector-java-8.0.26/mysql-connector-java-8.0.26.jar ../server/apache-hive-3.1.2-bin/lib/

4、配置

$ cd /opt/bigdata/hadoop/server/apache-hive-3.1.2-bin/conf
# 先备份一下
$ mv hive-site.xml local-derby-hive-site.xml 
# 复制一份
$ cp hive-default.xml.template hive-site.xml

hive-site.xml内容如下:

  
  



  
	hive.metastore.warehouse.dir
	/user/hive_remote/warehouse  
  



  hive.metastore.local
  true



  
  javax.jdo.option.ConnectionURL
  jdbc:mysql://hadoop-node1:3306/hive_local?createDatabaseIfNotExist=true&useSSL=false&serverTimezone=Asia/Shanghai




  javax.jdo.option.ConnectionDriverName
  com.mysql.jdbc.Driver




  javax.jdo.option.ConnectionUserName
  root
  



  javax.jdo.option.ConnectionPassword
  123456




  hive.metastore.schema.verification
  false



  system:user.name
  root
  user name



5、初始化元数据

# 初始化,--verbose:查询详情,可以不加
$ schematool -initSchema -dbType mysql --verbose

出现上图Initialization script completed和schemaTool completed,就初始化完成了。

通过mysql 客户端工具取连接数据,发现新增量了hive_local,这个库里有74张表。

6、启动验证

# 进入hive
$ hive
# 查看数据库
hive> show databases;
# 查看当前库(默认是default库)的表
hive> show tables;
# 查看当前库
hive> select current_database();

3)多用户模式(mysql)

该模式下就是客户端和服务端在不同的节点上,因此需要单独启动metastore服务。该模式需要hive.metastore.local设置为false,并将hive.metastore.uris设置为metastore服务器URI,如有多个metastore服务器,URI之间用逗号分隔。

  • 客户端hadoop-node2和服务端hadoop-node1分布在不同的节点上,客户端通过远程的方式连接。
  • 客户端hadoop-node2节点操作,基本和服务端差不多操作,区别是他不需要初始化

在hadoop-node2部署客户端

1、copy hive包到客户端hadoop-node2(在hadoop-node1服务端执行)

$ cd /opt/bigdata/hadoop/server
$ scp -r apache-hive-3.1.2-bin hadoop-node2:/opt/bigdata/hadoop/server/

2、在客户端添加环境变量(hadoop-node2)

  • 在/etc/profile文件中追加如下内容:
export HIVE_HOME=/opt/bigdata/hadoop/server/apache-hive-3.1.2-bin
export PATH=$HIVE_HOME/bin:$PATH

source 加载生效

$ source /etc/profile

3、配置hive-site.xml(hadoop-node2)

$ cd /opt/bigdata/hadoop/server/apache-hive-3.1.2-bin/conf/

hive-site.xml内容如下:



  
  
  
  hive.metastore.warehouse.dir  
  /user/hive/warehouse  
  
   
  
  hive.metastore.local  
  false  
  
  
  hive.metastore.schema.verification  
   false  

  
  
  hive.metastore.uris  
  thrift://hadoop-node1:9083  
  
  

4、服务端后台开启metastore(hadoop-node1)

$ nohup hive --service metastore &
$ ss -atnlp|grep 9083


5、在客户端执行hive操作(hadoop-node2)

# 这里使用新命令beeline,跟hive命令差不多
$ hive
$ show databases;
$ show tables;
$ create table users(id int,name string);
$ insert into users values(1,"zhangsan");



通过上面数据的插入操作,发现hive的操作最终会变成一个mapreduce任务在运行,也正验证了之前所述。

五、Hive客户端

Hive发展至今,总共历经了两代客户端工具:

  • 第一代客户端(deprecated不推荐使用):$HIVE_HOME/bin/hive,是一个shellUtil。主要功能:一是可用于以交互或批处理运行Hive查询;二是用于Hive相关服务的启动,比如metastore服务。
  • 第二代客户端(recommend 推荐使用):$HIVE_HOME/bin/beeline,是一个JDBC客户端,是官方强烈推荐使用的Hive命令行工具,和第一代客户端相比,性能加强安全性提高。

1)Hive CLI

1、查看帮助

使用 hive -H 或者 hive --help 命令可以查看所有命令的帮助,显示如下:

usage: hive
 -d,--define           Variable subsitution to apply to hive 
                                  commands. e.g. -d A=B or --define A=B  --定义用户自定义变量
    --database      Specify the database to use  -- 指定使用的数据库
 -e          SQL from command line   -- 执行指定的 SQL
 -f                     SQL from files   --执行 SQL 脚本
 -H,--help                        Print help information  -- 打印帮助信息
    --hiveconf    Use value for given property    --自定义配置
    --hivevar          Variable subsitution to apply to hive  --自定义变量
                                  commands. e.g. --hivevar A=B
 -i                     Initialization SQL file  --在进入交互模式之前运行初始化脚本
 -S,--silent                      Silent mode in interactive shell    --静默模式
 -v,--verbose                     Verbose mode (echo executed SQL to the  console)  --详细模式

2、交互式命令行

直接使用 hive 命令,不加任何参数,即可进入交互式命令行。

3、非交互式

在不进入交互式命令行的情况下,可以使用 hive -e 执行 SQL 命令。

示例:

$ hive -e "show databases";

4、接SQL文件非交互式执行SQL脚本

用于执行的 sql 脚本可以在本地文件系统,也可以在 HDFS 上。

准备一个sql文件test001.sql

$ cat test001.sql
show databases;
show tables;

本地文件系统执行

hive -f ./test001.sql


HDFS文件系统执行

# 先把sql文件传到hdfs上
$ hadoop fs -put test001.sql /
$ hadoop fs -ls hdfs://hadoop-node1:8082/test001.sql
$ hive -f hdfs://hadoop-node1:8082/test001.sql

5、配置Hive变量

$ hadoop fs -mkdir -p /user/hive/warehouse/test
$ hive -e "select * from users" 
--hiveconf hive.exec.scratchdir=/user/hive/warehouse/test  
--hiveconf mapred.reduce.tasks=4;

发现hdfs的目录没有写权限

添加权限再执行

$ hadoop fs -chmod -R 777 /user/hive/warehouse/test
$ hive -e "select * from users" 
--hiveconf hive.exec.scratchdir=/user/hive/warehouse/test  
--hiveconf mapred.reduce.tasks=4;

2)Beeline CLI(推荐)

HiveServer2

  • Hive 内置了 HiveServer 和 HiveServer2 服务,两者都允许客户端使用多种编程语言进行连接,但是 HiveServer 不能处理多个客户端的并发请求,所以产生了 HiveServer2。
  • HiveServer2(HS2)允许远程客户端可以使用各种编程语言向 Hive 提交请求并检索结果,支持多客户端并发访问和身份验证。HS2 是由多个服务组成的单个进程,其包括基于 Thrift 的 Hive 服务(TCP 或 HTTP)和用于 Web UI 的 Jetty Web 服务器。
  • HiveServer2 拥有自己的 CLI(Beeline),Beeline 是一个基于 SQLLine 的 JDBC 客户端。由于 HiveServer2 是 Hive 开发维护的重点 (Hive0.15 后就不再支持 hiveserver),所以 Hive CLI 已经不推荐使用了,官方更加推荐使用 Beeline。

1、查看帮助

Beeline 拥有更多可使用参数,可以使用 beeline --help 查看,完整参数如下:

$ beeline --help
Usage: java org.apache.hive.cli.beeline.BeeLine
   -u                the JDBC URL to connect to
   -r                              reconnect to last saved connect url (in conjunction with !save)
   -n                    the username to connect as
   -p                    the password to connect as
   -d                the driver class to use
   -i                   script file for initialization
   -e                       query that should be executed
   -f                   script file that should be executed
   -w (or) --password-file   the password file to read password from
   --hiveconf property=value       Use value for given property
   --hivevar name=value            hive variable name and value
                                   This is Hive specific settings in which variables
                                   can be set at session level and referenced in Hive
                                   commands or queries.
   --property-file= the file to read connection properties (url, driver, user, password) from
   --color=[true/false]            control whether color is used for display
   --showHeader=[true/false]       show column names in query results
   --headerInterval=ROWS;          the interval between which heades are displayed
   --fastConnect=[true/false]      skip building table/column list for tab-completion
   --autoCommit=[true/false]       enable/disable automatic transaction commit
   --verbose=[true/false]          show verbose error messages and debug info
   --showWarnings=[true/false]     display connection warnings
   --showNestedErrs=[true/false]   display nested errors
   --numberFormat=[pattern]        format numbers using DecimalFormat pattern
   --force=[true/false]            continue running script even after errors
   --maxWidth=MAXWIDTH             the maximum width of the terminal
   --maxColumnWidth=MAXCOLWIDTH    the maximum width to use when displaying columns
   --silent=[true/false]           be more silent
   --autosave=[true/false]         automatically save preferences
   --outputformat=[table/vertical/csv2/tsv2/dsv/csv/tsv]  format mode for result display
   --incrementalBufferRows=NUMROWS the number of rows to buffer when printing rows on stdout,
                                   defaults to 1000; only applicable if --incremental=true
                                   and --outputformat=table
   --truncateTable=[true/false]    truncate table column when it exceeds length
   --delimiterForDSV=DELIMITER     specify the delimiter for delimiter-separated values output format (default: |)
   --isolation=LEVEL               set the transaction isolation level
   --nullemptystring=[true/false]  set to true to get historic behavior of printing null as empty string
   --maxHistoryRows=MAXHISTORYROWS The maximum number of rows to store beeline history.
   --convertBinaryArrayToString=[true/false]    display binary column data as string or as byte array
   --help                          display this message

2、常用参数

在 Hive CLI 中支持的参数,Beeline 都支持,常用的参数如下。更多参数说明可以参见官方文档 Beeline Command Options

参数 说明
-u 数据库地址
-n 用户名
-p 密码
-d
-e 执行 SQL 命令
-f 执行 SQL 脚本
-i (or)–init 在进入交互模式之前运行初始化脚本
–property-file 指定配置文件
–hiveconf property=value 指定配置属性
–hivevar name=value 用户自定义属性,在会话级别有效

3、通过代理用户连接 Hive(不需要配置用户名和密码)

1)在hive服务的安装节点的hive-site.xml配置文件中添加以下配置



  hive.server2.thrift.bind.host
  hadoop-node1
  Bind host on which to run the HiveServer2 Thrift service.




  hive.server2.thrift.port
  11000

2)修改hadoop配置文件core-site.xml,表示设置可访问的用户及用户组

配置hadoop core-site.xml,再core-site.xml文件中追加如下内容


  hadoop.proxyuser.root.hosts
  *


  hadoop.proxyuser.root.groups
  *

【注意】hadoop.proxyuser.root.hosts和hadoop.proxyuser.root.hosts,其中“root”是连接beeline的用户,将“root”替换成自己的用户名即可。,这个用户是什么不重要,它就是个超级代理。

改完hadoop-node1后,把配置也推送到其它节点上,然后重启hadoop就行

$ /opt/bigdata/hadoop/server/hadoop-3.3.1/etc/hadoop
$ scp core-site.xml hadoop-node2:/opt/bigdata/hadoop/server/hadoop-3.3.1/etc/hadoop/
$ scp core-site.xml hadoop-node2:/opt/bigdata/hadoop/server/hadoop-3.3.1/etc/hadoop/
# 重启hadoop
$ stop-all.sh
$ start-all.sh

3)启动hiveserver2(hs2)

$ nohup hiveserver2 > /dev/null 2>&1 &
$ jobs -l
# 启动有点慢,可以稍等一段时间再查看端口
$ ss -antlp|grep 11000


4)连接,这里root就是上面core-site.xml配置的代理用户

【第一种方式】

$ beeline
beeline> !connect jdbc:hive2://hadoop-node1:11000
Enter username for jdbc:hive2://hadoop-node1:11000: root
# 密码直接回车就行
Enter password for jdbc:hive2://hadoop-node1:11000:
0: jdbc:hive2://hadoop-node1:11000> show databases;

【第二种方式】

$ beeline -u jdbc:hive2://hadoop-node1:11000  -n root

5)在~/.bashrc中添加alias

$ alias beeline="beeline -u jdbc:hive2://hadoop-node1:11000  -n root"
$ beeline


除了上面那种连接方式,还有以下几种方式

默认配置如下:



  hive.server2.thrift.port
  10000



  hive.server2.authentication
  NONE

这里需要稍微讲一下hive.server2.authentication的这种类型,连接方式如下:

  • NONE:这种类型就是默认值,hive没有启用用户安全认证,任何登录者都拥有超级权限,可以对hive进行任意操作。
  • NOSASL:需要任意一个用户名,不需要密码,不填写或者填写错误用户名会导致报错。
  • KERBEROS:用户需要拥有hive的keytab文件(类似于ssh-key等密钥),有了keytab就相当于拥有了永久的凭证,不需要提供密码,因此只要linux的系统用户对于该keytab文件有读写权限,就能冒充指定用户访问hadoop,因此keytab文件需要确保只对owner有读写权限。
  • LDAP:hive采用ldap统一认证服务,连接访问时需要提供username和password。
  • PAM:hive采用pam认证模块,同样需要提供username和password,只是原理大不相同。

PAM(Pluggable Authentication Modules)即可插拔式认证模块,它是一种高效而且灵活的用户级别的认证方式,它也是当前Linux服务器普遍使用 的认证方式。PAM可以根据用户的网段、时间、用户名、密码等实现认证。并不是所有需要验证的服务都使用PAM来验证,如MySQL-Server就没有安 装相应的PAM文件。

  • CUSTOM:可以根据自身需求对用户登录认证进行一定客制,比如将密码通过md5进行加密等。

3)DataGrip客户端

这里提供一个别人破解安装DataGrip的教程,如果没安装DataGrip,可以参考一下:http://www.32r.com/soft/70050.html

创建工程


2、关联本地目录到工程


3、配置连接hive


六、实战操作

Hive SQL跟mysql等关系型数据库的操作非常相似,如果了解过或学习过关系型数据库,使用Hive SQL就非常简单,学习成本也非常低。

1)建库,建表

hive有个默认的数据库default

1、建库

# 建库
create datatabse test1218
# 查库
show databases;
# 查看当前所在库
select current_database();
# 切库
use test1218;
select current_database();


2、建表

分隔符

Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、” ”、”x001″)、行分隔符(” ”)以及读取文件数据的方法。


    每行记录分隔符
^A    分隔列(八进制 01),对应ascii码SOH;
^B    分隔ARRAY或者STRUCT中的元素,或者MAP中多个键值对之间分隔(八进制 02)
^C    分隔MAP中键值对的“键”和“值”(八进制 03)

对应sql设置

row format delimited 
fields terminated by "01" 
collection items terminated by "02" 
map keys terminated by "03"
lines terminated by "
" 
stored as textfile; 

创建表

-- 创建表时指定库,默认分隔符
CREATE TABLE  IF NOT EXISTS test1218.person (
id INT,
name STRING,
age INT,
likes ARRAY,
address MAP
);
-- 创建表时指定库,指定分隔符
CREATE TABLE  IF NOT EXISTS test1218.person_1 (
id INT COMMENT "ID",
name STRING COMMENT "名字",
age INT COMMENT "年龄",
likes ARRAY COMMENT "爱好",
address MAP COMMENT "地址"
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ","
COLLECTION ITEMS TERMINATED BY "-"
MAP KEYS TERMINATED BY ":"
LINES TERMINATED BY "
";

show tables;


在HDFS页面上查看对应的文件

3、上传表数据到HDFS
person_1表数据

1,t1,18,lol-book-movie,地址:广东.深圳.南山
2,t2,20,lol-book-movie,地址:广东.深圳.南山
3,t3,21,lol-book-movie,地址:广东.深圳.南山
4,t4,21,lol-book-movie,地址:广东.深圳.南山
5,t5,21,lol-book-movie,地址:广东.深圳.南山
6,t6,21,lol-book-movie,地址:广东.深圳.南山

通过命令上传数据

$ hadoop fs -put person_1-data.txt /user/hive_remote/warehouse/test1218.db/person_1/
$ hadoop fs -ls /user/hive_remote/warehouse/test1218.db/person_1/

查看数据

select * from test1218.person_1;

2)查看

# 显示所有库
show databases ;
# 查看当前库
select current_database();
# 查看default库里的表
show tables in default;
# 查看当前数据里的表
show tables ;
# 查询显示一张表的元数据信息
desc formatted person_1;

3)注释COMMENT中文乱码解决

【原因】元数据保存在mysql中,默认不支持中文,默认的编码是latin1

desc formatted person_1;


【解决】修改Hive存储的元数据信息(metastore),下面语句是在mysql中执行,数据库记得换成自己的。

use hive_local;
show tables;

alter table hive_local.COLUMNS_V2 modify column COMMENT varchar(256) character set utf8;
alter table hive_local.TABLE_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
alter table hive_local.PARTITION_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
alter table hive_local.PARTITION_KEYS modify column PKEY_COMMENT varchar(4000) character set utf8;
alter table hive_local.INDEX_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;

再查看还是没改过来,是因为对已经创建的表是不生效的,得删除表重新创建表才会显示正常。

# 删表
drop table test1218.person_1;
# 创建表
-- 创建表时指定库,指定分隔符
CREATE TABLE  IF NOT EXISTS test1218.person_1 (
id INT COMMENT "ID",
name STRING COMMENT "名字",
age INT COMMENT "年龄",
likes ARRAY COMMENT "爱好",
address MAP COMMENT "地址"
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ","
COLLECTION ITEMS TERMINATED BY "-"
MAP KEYS TERMINATED BY ":"
LINES TERMINATED BY "
";

再查看表的元数据信息,中文注释信息显示正常了

desc formatted person_1;

4)Load加载数据(推荐)

# 创建表
create table person_local_1(id int,name string,age int) row format delimited fields terminated by ",";
create table person_hdfs_1(id int,name string,age int) row format delimited fields terminated by ",";
show tables;
# 从local加载数据,这里的local是指hs2服务所在机器的本地linux文件系统
load data local inpath "/opt/bigdata/hadoop/data/hive-data" into table person_local_1;
# 查询
select * from person_local_1;
# 从hdfs中加载数据,这里是移动,会把hdfs上的文件mv到对应的hive的目录下
load data inpath "/person_hdfs.txt"  into table person_hdfs_1;
# 查询
select * from person_hdfs_1;

5)Insert添加数据(特别慢,不推荐)

insert into table person_hdfs_1 values (4,"p4",21);

上面那条插入语句会启动一个MR任务

更多Hive SQL操作,可以参考官方文档:https://hive.apache.org/

原文地址:https://www.cnblogs.com/liugp/archive/2022/04/05/16104516.html

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

大数据Hadoop之——数据仓库Hive

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

大数据Hadoop之——数据仓库Hive

目录一、概述二、Hive优点与使用场景1)优点2)使用场景三、Hive架构1)服务端组件1、Driver组件2、Metastore组件3、Thrift服务2)客户端组件1、CLI2、Thrift客户端3、WEBGUI3)Metastore详解四、Hive的工作
大数据Hadoop之——数据仓库Hive
2018-04-25

Hive数据仓库如何使用

这篇文章将为大家详细讲解有关Hive数据仓库如何使用,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。Hive是一个数据仓库基础工具在Hadoop中用来处理结构化数据。它架构在Hadoop之上,总归为大数据,
2023-06-27

Docker搭建大数据平台之Hadoop, Spark,Hive初探

本文基于云原生docker,搭建单机版的大数据平台,初探大数据相关技术的搭建使用,抛砖引玉。

数据仓库之数仓治理

数据治理(Data Governance),是一套持续改善管理机制,通常包括了数据架构组织、数据模型、政策及体系制定、技术工具、数据标准、数据质量、影响度分析、作业流程、监督及考核流程等内容。

大数据Hadoop之——Spark on Hive 和 Hive on Spark的区别与实现

目录一、Spark on Hive 和 Hive on Spark的区别1)Spark on Hive2)Hive on Spark(本章实现)二、Hive on Spark实现1)先下载hive源码包查看spark版本2)下载spark3)解压编译4)解压5
大数据Hadoop之——Spark on Hive 和 Hive on Spark的区别与实现
2020-12-20

数据仓库和Hive环境搭建

数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库顾名思义,是一个很大的数据存储集合,出于企业的分析性报告和决策支持目的而创建,对多样的业务数据进行筛选与整合。

大话数仓,数据仓库(一)

数据仓库,是越来越流行的数据解决方案。传统烟囱式的数据开发模式,显然不能满足日益增长的数据需求,而作为大数据量化方案、解决大数据问题、发掘数据价值的大数据仓库被很多公司采纳使用。

hive数据仓库新增字段方法

目录新增字段1、方法1cascade知识2、方法2 (适用于外部表)3、方法3(下下策)修改字段删除列新增字段1、方法1alter taTyVzTble 表名 add columns (列名 string COMMENT '新添加的列'
2022-06-23

数据湖与数据仓库之间的五大差异

根据Google的说法,对“大数据”的兴趣已经持续了好几年,而且在过去几年里真正的兴起。这篇文章的目的是为了帮助突出数据湖泊和数据仓库之间的差异,帮助您就如何管理数据做出明智的决定。

从数据池或大数据仓库到数据湖

这篇博文讨论了从数据池/大数据仓库到数据湖的演变。它探讨了传统数据仓库的局限性以及数据湖在可扩展性、敏捷性和自助服务方面的优势

hadoop数据库怎么读取大量数据

Hadoop是一个开源的分布式存储和计算框架,可以帮助处理大量数据。要读取Hadoop数据库中的大量数据,可以使用Hadoop的MapReduce框架或Spark框架。在使用MapReduce框架时,可以编写一个MapReduce程序来读
hadoop数据库怎么读取大量数据
2024-03-04

数据湖 VS 数据仓库之争?阿里提出大数据架构新概念:湖仓一体

数据仓库和数据湖的区别到底是什么,是技术路线之争?是数据管理方式之争?二者是水火不容还是其实可以和谐共存,甚至互为补充?

大数据Hadoop之——Spark SQL+Spark Streaming

目录一、Spark SQL概述二、SparkSQL版本1)SparkSQL的演变之路2)shark与SparkSQL对比3)SparkSession三、RDD、DataFrames和DataSet1)三者关联关系1)RDD1、核心概念2、RDD简单操作3、RD
大数据Hadoop之——Spark SQL+Spark Streaming
2019-06-08

Hadoop数据仓库的主要特征有哪些?

数据仓库(英语:Data Warehouse,简称数仓、DW),是一个用于存储、分析、报告的数据系统。数据仓库的目的是构建面向分析的集成化数据环境,分析结果为企业提供决策支持(Decision Support)。

大数据Hadoop之—Apache Hudi 数据湖实战操作

构建hudi后,可以通过cd hudi cli&&./hudi-cli.sh启动shell。一个hudi表驻留在DFS上的一个称为basePath的位置,我们需要这个位置才能连接到hudi表。Hudi库有效地在内部管理此表,使用.hoodi

编程热搜

目录