我的编程空间,编程开发者的网络收藏夹
学习永远不晚

高级数据分析常见的五种挑战

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

高级数据分析常见的五种挑战

然而,实践者们都非常清楚,高级分析并不都是成功的。对于每一个令人印象深刻的案例研究或令人兴奋的头条新闻,都有几十个项目未能发挥其潜力。高级分析项目的探索性、反直觉性和技术性通常是每个项目面临挑战的原因。这些失败的背后还有什么原因呢?

在过去的几个月里,我们回顾了自己的经验,并与多个行业的高级分析领导者和实践者讨论了分析项目失败的原因。以下五种跨领域的障碍与行业无关,它们是项目需要克服的共同主题,以便充分发挥潜力。

1. 问题定义不明确的挑战

糟糕的问题定义是分析团队面临的重大挑战。将一个组织面临的广泛挑战分解为可解决的部分通常是非常困难的,而评估哪些部分在解决后将产生最大的影响则更加困难。

那么,当分析项目专注于错误的问题——或者至少是正确问题的错误方面时,它们的后果是什么?当这个问题出现时,项目最终会:

  • 没有解决明确的业务需求
  • 与整体业务战略不一致
  • 缺乏实现投资回报的明确途径
  • 与企业成功的真正驱动力脱节
  • 专注于有趣的事情,而不是产生最大影响的事情

2. 数据质量低、不一致或缺失的挑战

任何模型的强大程度都取决于它所依赖的数据。然而,获取正确的数据而且足够多可能会很困难。在以上情况下可能会发生:

  • 所需数据不存在
  • 数据质量不足以继续进行项目
  • 项目团队无权访问必要的数据
  • 数据访问成本太高
  • 数据工程太昂贵或太耗时而无法使数据可用

3. 执行中技术方法与问题不一致的挑战

不幸的是,确定正确的业务问题供分析解决并拥有解决问题所需的数据不足以构建交付业务成果的模型。即使前两个步骤正确,团队也可能由于以下原因无法完成工作模型:

  • 在整个过程中缺乏适当的技术人才或领域专家
  • 过度规划项目并试图一次实现太多目标
  • 在开发解决方案时使用了错误的技术、算法或方法
  • 没有建立足够准确的模型来进行预测
  • 可用资源不足,无法达到产生影响所需的质量或范围
  • 该项目的交付时间比预期的要长,并且没有足够的预算来完成模型

4.未能考虑到人为因素的挑战

即使交付了一个工作模型,如果目标用户不采用它,或者没有集成到现有的技术或业务流程中,它仍然可能会失败。虽然技术集成会带来问题,但用户采用是分析项目失败的更大原因。最好的数据科学和结构最完善的模型如果不容易使用和部署以增强人类决策,那么它们将产生很小的影响。在以下情况下会出现采用和可用性失败:

  • 目标用户没有参与或积极拒绝采取干预措施
  • 操作程序和激励措施不鼓励用户将模型纳入他们的持续行为中
  • 模型的交互或界面太难使用
  • 该解决方案不容易集成到现有技术堆栈、当前基础架构或组织缺乏必要的数据仓库、云处理和存储等能力

5. “一次性”陷阱的挑战

虽然一种模式在最初被采用时可能会蓬勃发展,但如果长期被抛弃,可能是由于缺乏内部支持,或者是由于在建立它的组织发生重大变化后没有适应。

  • 未能调整模型以适应组织需求、业务战略或目标的变化
  • 由于环境、模式或行为的变化,模型性能随时间恶化
  • 没有足够的技术支持来调整数据管道中的问题、源系统或 API 的更改等。
  • 缺乏长期采用,最终用户回滚到旧的工作方式,创建新的解决方法或使用次优系统

虽然不同的组织处于其数据分析过程的不同阶段,但我们已经看到整个高级分析行业的整体成熟度不断提高。技术人才、适当数据的可访问性和模型概念背后的思想通常最初是合理的,因此导致问题、数据和执行失败模式的因素通常比两年前更普遍。上面强调的问题四和问题五代表了许多高级分析项目的最新瓶颈,很大程度上取决于用户的采用。仅靠数据科学无法解决这个问题。根据经验,以人为本的设计,超越界面和数据可视化,在消除这一瓶颈和确保分析项目发挥其全部影响方面发挥着不可或缺的作用。

从项目一开始就集成设计,早在问题定义阶段,就可以更早地开始变更管理过程,并在许多导致失败的问题之前进行处理。考虑未满足的需求,并尽早发现潜在的用户问题。正如一位经验丰富的分析高管所说,“分析的50%影响在于你的模式有多好,另外50%则是用户接受度。两者缺一不可,不会给你带来任何有价值的东西。”

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

高级数据分析常见的五种挑战

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

高级数据分析常见的五种挑战

我们经常听到高级分析的成功案例。人们对人工智能的期望很高——据预测人工智能和人工智能的年经济价值将在9.5万亿到15.4万亿美元之间——因此,只要有可能,许多人都想把目光聚焦在数据分析技术的发展上。

五分钟挑战:Python while 循环的七种高效玩法!

今天我们将深入探讨一个基础但极其强大的控制流工具——while循环。别看它简单,巧妙运用可以让你的代码既高效又优雅。

数据中心迁移中常见的七个挑战

数据中心迁移可能具有挑战性,但适当的规划可以防止一些问题。企业应了解数据中心迁移中最常见的问题,以避免成本过高、延迟和潜在的数据丢失。
数据中心2024-11-30

这是我见过最【高级】的数据分析

作为从业者,我们还是希望业内浮躁盲目的气氛少一点,大家多认真干活,这也是陈老师努力科普的原因。并且这里有些工作,比如预测业绩,比如预测响应率,还是需要用到一定算法,比直接跑报表有技术含量。​

首席数据官加强分析战略的五种方式

过去十多年来,首席数据官 (CDO) 因其为企业带来的价值而得到越来越多的认可。事实上,现在已有65%的公司拥有CDO职位,相较于2012年的12%可谓是实现了大幅增加。

数据分析中十种常见的可视化图例

漏斗图(funnel chart)类似于漏斗的形状,其中每个部分逐渐变窄。分段垂直排列,以显示层次结构。在漏斗图中,每个分段对应于顺序过程中的一个步骤或阶段。它们说明了数据点在各个阶段中的进展。

警惕!数据分析报告的四种常见错误

写数据报告,最怕听见这三个字。特别是新同学,听到这三字简直如雷贯耳被吓得不知所措。其实,并非所有的错误都是我们的问题。今天我们就系统讲解下,数据分析报告常见的错误,和其中真正应该警觉的部分。

2021年大数据分析的5大挑战

2021年已经到来,现在是深入研究大数据分析面临的挑战的时候了,需要调查其根本原因,本文重点介绍了解决这些问题的潜在解决方案。

物联网系统中数据分析的五大挑战及解决方法

在本文中,我们深入探讨了组织在其物联网生态系统中实施或利用数据分析时面临的五个关键挑战。管理庞大的数据量和多样性,满足实时处理需求,确保互操作性和可扩展性,应对长期维护的复杂性——每一个障碍都会带来独特的障碍。
物联网IOT2024-11-30

大数据安全分析的机遇与挑战

数据的激增也带来了重大的安全挑战,需要整合大数据安全分析。网络安全的这种范式转变为旨在保护其敏感信息并保持强大安全态势的组织提供了机遇和挑战。

AI核心难点之一:情感分析的常见类型与挑战

编程学习网:情感分析或情感人工智能,在商业应用中通常被称为意见挖掘,是自然语言处理(NLP)的一个非常流行的应用。文本处理是该技术最大的分支,但并不是唯一的分支。情绪AI有三种类型及其组合。
AI核心难点之一:情感分析的常见类型与挑战
2024-04-23

PHP程序中常见的错误级别种类分析

PHP程序中常见的错误级别种类分析在开发PHP程序时,我们经常会遇到各种各样的错误,这些错误可能会影响程序的运行和性能。在PHP中,错误可以分为几个不同的级别,每个级别代表睦的严重性和处理方式。在本文中,我们将分析PHP程序中常见的错误级
PHP程序中常见的错误级别种类分析
2024-03-08

PHP程序中常见的错误级别种类分析

PHP程序中常见的错误级别种类分析在开发PHP程序时,我们经常会遇到各种各样的错误,这些错误可能会影响程序的运行和性能。在PHP中,错误可以分为几个不同的级别,每个级别代表睦的严重性和处理方式。在本文中,我们将分析PHP程序中常见的错误级
PHP程序中常见的错误级别种类分析
2024-03-08

数据分析常见的五个误区,新手避坑必须要看

数据是客观的,但解读数据的人是主观的。同一份数据,受经验、思维、心态的影响,由不同的数据分析师得出的结果很可能截然不同。

讨论 | 数据分析的挑战和实践案例

为什么组织难以优化其数据分析?为了了解数据分析中的挑战并提出一些实践案例, Dell Boomi公司全球企业营销主管Myles Suer、巴布森学院教授Tom Davenpor、哈佛商学院教授Marco Iansiti、Principal研
数据分析2024-12-03

分库分表实战:新的挑战—千万级数据优化之垂直拆分

垂直拆分其实分为垂直分库和垂直分表,我们这里指的是垂直分库,说白了就是由一个数据库拆分出来多个数据库,那么具体怎么拆分呢?

分库分表实战:新的挑战-千万级数据优化之垂直拆分

读写分离方案上线后,订单sql查询时间再一次稳定在了300ms以下,此时对数据的增删改操作会走主库,而读请求会走从库,通过读写分离大大提升了数据读的处理能力,但遗憾的是没办法提升主库写数据的能力。

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录