使用flink的sql-client.sh,测试mysql-->kafka-->kafka-->mysql实时流
短信预约 -IT技能 免费直播动态提醒
目录
1. 环境介绍
服务 | 版本 |
---|---|
zookeeper | 3.8.0 |
kafka | 3.3.1 |
flink | 1.13.5 |
mysql | 5.7.34 |
jdk | 1.8 |
scala | 2.12 |
连接器 | 作用 |
---|---|
flink-sql-connector-upsert-kafka_2.11-1.13.6.jar | 连接kafka,支持主键更新 |
flink-connector-mysql-cdc-2.0.2.jar | 读mysql |
flink-connector-jdbc_2.11-1.13.6.jar | 写mysql |
mysql-connector-java-5.1.37.jar | 连接mysql |
2. mysql中建表
CREATE TABLE class="lazy" data-src_mysql_order( order_id BIGINT, store_id BIGINT, sales_amt double, PRIMARY KEY (`order_id`));CREATE TABLE class="lazy" data-src_mysql_order_detail( order_id BIGINT, store_id BIGINT, goods_id BIGINT, sales_amt double, PRIMARY KEY (order_id,store_id,goods_id));CREATE TABLE dim_store( store_id BIGINT, store_name varchar(100), PRIMARY KEY (`store_id`) );CREATE TABLE dim_goods( goods_id BIGINT, goods_name varchar(100), PRIMARY KEY (`goods_id`));CREATE TABLE dwa_mysql_order_analysis (store_id BIGINT,store_name varchar(100),sales_goods_distinct_nums bigint,sales_amt double,order_nums bigint,PRIMARY KEY (store_id,store_name));
3. flinksql建表
3.1 进入flinksql客户端
sql-client.sh embedded
3.2 配置输出格式
SET sql-client.execution.result-mode=tableau;
3.3 flink建表
--mysql中的 订单主表CREATE TABLE class="lazy" data-src_mysql_order( order_id BIGINT, store_id BIGINT, sales_amt double, PRIMARY KEY (`order_id`) NOT ENFORCED) WITH ( 'connector' = 'mysql-cdc', 'hostname' = 'hadoop002', 'port' = '3306', 'username' = 'root', 'password' = 'root', 'database-name' = 'test', 'table-name' = 'class="lazy" data-src_mysql_order', 'scan.incremental.snapshot.enabled' = 'false');--mysql中的 订单明细表CREATE TABLE class="lazy" data-src_mysql_order_detail( order_id BIGINT, store_id BIGINT, goods_id BIGINT, sales_amt double, PRIMARY KEY (order_id,store_id,goods_id) NOT ENFORCED) WITH ( 'connector' = 'mysql-cdc', 'hostname' = 'hadoop002', 'port' = '3306', 'username' = 'root', 'password' = 'root', 'database-name' = 'test', 'table-name' = 'class="lazy" data-src_mysql_order_detail', 'scan.incremental.snapshot.enabled' = 'false');--mysql中的 商店维表CREATE TABLE dim_store( store_id BIGINT, store_name varchar(100), PRIMARY KEY (`store_id`) NOT ENFORCED) WITH ( 'connector' = 'mysql-cdc', 'hostname' = 'hadoop002', 'port' = '3306', 'username' = 'root', 'password' = 'root', 'database-name' = 'test', 'table-name' = 'dim_store', 'scan.incremental.snapshot.enabled' = 'false');--mysql中的 商品维表CREATE TABLE dim_goods( goods_id BIGINT, goods_name varchar(100), PRIMARY KEY (`goods_id`) NOT ENFORCED) WITH ( 'connector' = 'mysql-cdc', 'hostname' = 'hadoop002', 'port' = '3306', 'username' = 'root', 'password' = 'root', 'database-name' = 'test', 'table-name' = 'dim_goods', 'scan.incremental.snapshot.enabled' = 'false');--kafka中的 ods层 订单表CREATE TABLE ods_kafka_order ( order_id BIGINT, store_id BIGINT, sales_amt double, PRIMARY KEY (`order_id`) NOT ENFORCED) WITH ( 'connector' = 'upsert-kafka', 'topic' = 'ods_kafka_order', 'properties.bootstrap.servers' = 'hadoop001:9092', 'properties.group.id' = 'ods_group1', 'key.format' = 'json', 'value.format' = 'json');----kafka中的 ods层 订单明细表CREATE TABLE ods_kafka_order_detail ( order_id BIGINT, store_id BIGINT, goods_id BIGINT, sales_amt double, PRIMARY KEY (order_id,store_id,goods_id) NOT ENFORCED) WITH ( 'connector' = 'upsert-kafka', 'topic' = 'ods_kafka_order_detail', 'properties.bootstrap.servers' = 'hadoop001:9092', 'properties.group.id' = 'ods_group1', 'key.format' = 'json', 'value.format' = 'json');--kafka中的 dwd层 订单表CREATE TABLE dwd_kafka_order ( order_id BIGINT, store_id BIGINT, sales_amt double, PRIMARY KEY (`order_id`) NOT ENFORCED) WITH ( 'connector' = 'upsert-kafka', 'topic' = 'dwd_kafka_order', 'properties.bootstrap.servers' = 'hadoop001:9092', 'properties.group.id' = 'dwd_group1', 'key.format' = 'json', 'value.format' = 'json');--kafka中的 dwd层 订单明细表CREATE TABLE dwd_kafka_order_detail ( order_id BIGINT, store_id BIGINT, goods_id BIGINT, sales_amt double, PRIMARY KEY (order_id,store_id,goods_id) NOT ENFORCED) WITH ( 'connector' = 'upsert-kafka', 'topic' = 'dwd_kafka_order_detail', 'properties.bootstrap.servers' = 'hadoop001:9092', 'properties.group.id' = 'dwd_group1', 'key.format' = 'json', 'value.format' = 'json');--mysql中的dwa 订单指标统计CREATE TABLE dwa_mysql_order_analysis (store_id BIGINT,store_name varchar(100),sales_goods_distinct_nums bigint,sales_amt double,order_nums bigint,PRIMARY KEY (store_id,store_name) NOT ENFORCED) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://hadoop002:3306/test', 'table-name' = 'dwa_mysql_order_analysis', 'driver' = 'com.mysql.cj.jdbc.Driver', 'username' = 'root', 'password' = 'root','sink.buffer-flush.max-rows' = '10');
3.4 任务流配置
--任务流配置insert into ods_kafka_order select * from class="lazy" data-src_mysql_order;insert into ods_kafka_order_detail select * from class="lazy" data-src_mysql_order_detail;insert into dwd_kafka_order select * from ods_kafka_order;insert into dwd_kafka_order_detail select * from ods_kafka_order_detail;insert into dwa_mysql_order_analysisselect orde.store_id as store_id,store.store_name as store_name,count(distinct order_detail.goods_id) as sales_goods_distinct_nums,sum(order_detail.sales_amt) as sales_amt,count(distinct orde.order_id) as order_numsfrom dwd_kafka_order as ordejoin dwd_kafka_order_detailas order_detailon orde.order_id = order_detail.order_idjoin dim_store as store on orde.store_id = store.store_id group by orde.store_id,store.store_name ;
查看flink管理界面,可以看到有5个正在运行的任务,实时流就配置好了
4. 测试
4.1 插入测试数据
insert into class="lazy" data-src_mysql_order values (20221210001,10000,50),(20221210002,10000,20),(20221210003,10001,10);insert into class="lazy" data-src_mysql_order_detail values (20221210001,10000,100000,30),(20221210001,10000,100001,20),(20221210002,10000,100001,20),(20221210003,10001,100000,10);insert into dim_store values (10000, '宇唐总店'),(10001, '宇唐一店'),(10002, '宇唐二店'),(10003, '宇唐三店');insert into dim_goods values (100000, '天狮达特浓缩枣浆'),(100001, '蜜炼柚子茶');
4.2 查看结果表数据
4.3 新增测试数据
insert into class="lazy" data-src_mysql_order values (20221210004,10002,50), (20221210005,10003,30);insert into class="lazy" data-src_mysql_order_detail values (20221210004,10002,100000,30),(20221210004,10002,100001,20),(20221210005,10003,100000,10),(20221210005,10003,100001,20);
4.4 再次查看结果表数据
来源地址:https://blog.csdn.net/TangYuG/article/details/128268085
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341