我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Java深入分析与解决Top-K问题

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Java深入分析与解决Top-K问题

题目

求最小的K个数

设计一个算法,找出数组中最小的k个数。以任意顺序返回这k个数均可。

解题方案

方法一

排序(冒泡/选择)

思路

1,冒泡排序是每执行一次,就会确定最终位置,执行K次后,就可以得到结果,时间复杂度为O(n * k),当k<<n时,O(n * k)的性能会比O(N*logN)好。

2,选择排序每执行依次,就会通过确定一个最大的或最小的放在一端,通过选择排序,执行K次就可以得到最大的K个数了。时间复杂度时O(N * K)。

代码实现

  //冒泡排序
    public static int[] topKByBubble(int[] arr, int k) {
        int[] ret = new int[k];
        if (k == 0 || arr.length == 0) {
            return ret;
        }
        for (int i = 0; i < k; i++) {
            for (int j = arr.length - 1; j < i; j--) {
                if (arr[j] > arr[j + 1]) {
                    swap(arr, j, j + 1);
                }
            }
            ret[i] = arr[i];
        }
        return ret;
    }
    //选择排序
    public static int[] topKBySelect(int[] arr, int k) {
        int[] ret = new int[k];
        for (int i = 0; i < k; i++) {
            int maxIndex = i;
            int maxNum = arr[maxIndex];
            for (int j = i + 1; j < arr.length; j++) {
                if (arr[j] > maxNum) {
                    maxIndex = j;
                    maxNum = arr[j];
                }
            }
            if (maxIndex != i) {
                swap(arr, maxIndex, i);
            }
            ret[i] = arr[i];
        }
        return ret;
    }
    public static void swap(int[] arr, int a, int b) {
        int temp = arr[a];
        arr[a] = arr[b];
        arr[b] = temp;
    }

方法二

分治-快速排序

思路

1,快速排序的核心是分治思想,先通过分治partition把序列分为两个部分,再将两个部分进行再次递归;

2,利用分治思想,即划分操作partition,根据主元素pivot调整序列,比pivot大的放在左端,比pivot小的放在右端,这样确定主元素pivot的位置pivotIndex,如果pivotIndex刚好是k-1,那么前k-1位置的数就是前k大的元素,即我们要求的top K。

时间复杂度: O(n)

代码实现

public static int[] topKByPartition(int[] arr, int k){
    if(arr.length == 0 || k <= 0){
        return new int[0];
    }
    return quickSort(arr,0,arr.length-1,k);

}
//快速排序
public static int[] quickSort(int[] arr, int low, int high, int k){
    int n = arr.length;
    int pivotIndex = partition(arr, low, high);
    if(pivotIndex == k-1){
        return Arrays.copyOfRange(arr,0,k);
    }else if(pivotIndex > k-1){
        return quickSort(arr,low,pivotIndex-1,k);
    }else {
        return quickSort(arr,pivotIndex+1,high,k);
    }
}
public static int partition(int[] arr, int low, int high){
   if(high - low == 0){
       return low;
   }
   int pivot = arr[high];
   int left = low;
   int right = high-1;
   while (left < right){
       while (left < right && arr[left] > pivot){
           left++;
       }
       while (left < right && arr[right] < pivot){
           right--;
       }
       if(left < right){
           swap(arr,left,right);
       }else {
           break;
       }
   }
   swap(arr,high,left);
   return left;
}
public static void swap(int[] arr,int a, int b){
    int temp = arr[a];
    arr[a] = arr[b];
    arr[b] = temp;
}

方法三

利用堆

思路

1,构建一个最大堆

2,遍历原数组,元素入队,当堆的大小为K时,只需要将堆顶元素于下一个元素比较,如果大于堆顶元素,则将堆顶元素删除,将该元素插入堆中,直到遍历完所有元素

3,将queue存储的K个数出队

时间复杂度:为O(N*logK)

代码实现

public class TopK {
    public int[] smallestK(int[] arr, int k) {
        int[] ret = new int[k];
        if(k==0 || arr.length==0){
            return ret;
        }
        // 1,构建一个最大堆
        // JDK的优先级队列是最小堆, 就要用到我们比较器
        Queue<Integer> queue = new PriorityQueue<>(new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2 - o1;
            }
        });
        //2,遍历原数组,进行入队
        for(int value:arr){
            if(queue.size() < k){
                queue.offer(value);
            }else{
                if(value < queue.peek()){
                    queue.poll();
                    queue.offer(value);
                }
            }
        }
        //3,将queue中存储的K个元素出队
        for(int i = 0;i < k;i++){
            ret[i] = queue.poll();
        }
        return ret;
    }
}

到此这篇关于Java深入分析与解决Top-K问题的文章就介绍到这了,更多相关Java Top-K内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Java深入分析与解决Top-K问题

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Java怎么解决Top-K的问题

这篇文章主要介绍“Java怎么解决Top-K的问题”,在日常操作中,相信很多人在Java怎么解决Top-K的问题问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java怎么解决Top-K的问题”的疑惑有所帮助!
2023-06-30

Java怎么用堆解决Top-k问题

本篇内容介绍了“Java怎么用堆解决Top-k问题”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!1、什么是堆?堆结构堆其实就是一种二叉树,但
2023-06-30

Java跨域问题分析与解决方法详解

这篇文章主要介绍了Java跨域问题分析与解决方法,跨域问题是在Web应用程序中,由于同源策略的限制,导致浏览器无法发送跨域请求,也无法获取跨域响应的问题,感兴趣想要详细了解可以参考下文
2023-05-20

MySQL深分页问题原理与三种解决方案

目录1 深分页问题1.1 创建表1.2 新增100万条数据1.3 深分页语句1.4 结果分析2 深分页优化方案2.1 方案一2.2 方案二2.2.1 优化语句2.2.2 执行计划2.2.3 结果分析2.3 方案三2.3.1 优化语句2.3.
2023-05-05

ASP 对象与知識點问题:如何深入理解并解决

ASP 对象与知識點问题,如何深入理解并解决?
ASP 对象与知識點问题:如何深入理解并解决
2024-02-13

Redis拒绝连接问题分析与解决方案

目录前言1. 问题描述2. Redis拒绝连接的常见原因分析2.1 Redis服务未启动2.2 Redis配置中的绑定地址问题2.3 防火墙或安全组问题2.4 Redis连接池耗尽2.5 Redis服务器负载过高2.6 权限配置问题3. 深
Redis拒绝连接问题分析与解决方案
2024-10-16

C++内存泄漏问题分析与解决方案

C++内存泄漏问题分析与解决方案在C++的开发过程中,内存泄漏是一个常见的问题。当程序动态分配内存后却没有正确释放,在程序运行过程中会导致内存的不断累积,最终耗尽系统的可用内存。内存泄漏不仅会影响程序的性能,还可能导致程序崩溃甚至系统崩溃。
2023-10-22

C++中类型推断问题分析与解决方案

C++中类型推断问题分析与解决方案概述:类型推断是C++中的一项重要特性,它可以让程序员通过编译器自动推断变量的类型,从而简化代码并提高开发效率。然而,在一些情况下,类型推断可能会引发一些问题,例如不正确的类型推断、代码可读性差等。本文将分
2023-10-22

C++中文件操作问题分析与解决方案

C++中文件操作问题分析与解决方案在C++编程中,文件操作是一个非常常见的需求。然而,由于各种原因,可能会出现一些问题。本文将分析几种常见的文件操作问题,并提供相应的解决方案,同时附有具体的代码示例。问题一:文件打开失败当我们尝试打开一个文
2023-10-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录