我的编程空间,编程开发者的网络收藏夹
学习永远不晚

浅谈Golang数据竞态

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

浅谈Golang数据竞态

本文以一个简单事例的多种解决方案作为引子,用结构体Demo来总结各种并发读写的情况

一个数据竞态的case

package main

import (
	"fmt"
	"testing"
	"time"
)

func Test(t *testing.T) {
  fmt.Print("getNum(): ")
	for i := 0; i < 10; i++ {
		fmt.Print(strconv.Itoa(getNum()) + " ")
	}
	fmt.Println()

}
func getNum() int {
	var num int
	go func() {
		num = 53
	}()
	time.Sleep(500)
	return num
}

在case中,getNum先声明一个变量num,之后在goRoutine中单读对num进行设置,而此时程序也正从函数中返回num, 因为不知道goRoutine是否完成了对num的修改,所以会导致以下两种结果:

  • goRoutine先完成对num的修改,最后返回5
  • 变量num的值从函数返回,结果为默认值0

操作完成的顺序不同,导致最后的输出结果不同,这就是将其称为数据竟态的原因。

检查数据竞态

Go有内置的数据竞争检测器,可以使用它来查看潜在的数据竞争条件。使用它就像-race在普通的Go命令行工具中添加标志一样。

  • 运行时检查: go run -race main.go
  • 构建时检查: go build -race main.go
  • 测试时检查: go test -race main.go

所有避免产生竞态背后的核心原则是防止对同一变量或内存位置同时进行读写访问

解决方案

1、WaitGroup等待

解决数据竞态的最直接方法是阻止读取访问操作直到写操作完成为止。
可以以最少的麻烦解决问题,但必须要保证Add和Done出现次数一致,否则会一致阻塞程序,无限制消耗内存,直至资源耗尽服务宕机

func getNumByWaitGroup() int {
	var num int
	var wg sync.WaitGroup
	wg.Add(1) // 表示有一个任务需要等待,等待任务数+1
	go func() {
		num = 53
		wg.Done() // 完成一个处于等待队列的任务,等待任务-1

		// Done decrements the WaitGroup counter by one.
		// func (wg *WaitGroup) Done() {
		//	wg.Add(-1)
		//}

	}()
	wg.Wait() // 阻塞等待,直到等待队列的任务数为0
	return num
}

2、Channel阻塞等待

与1相似

func getNumByChannel() int {
	var num int
	ch := make(chan struct{}) // 创建一个类型为结构体的channel,并初始化为空
	go func() {
		num = 53
		ch <- struct{}{} // 推送一个空结构体到ch
	}()
	<-ch // 使程序处于阻塞状态,直到ch获取到推送的值
	return num
}

3、Channel通道

获取结果后通过通道推送结果,与前两种方法不同,该方法不会进行任何阻塞。
相反,保留了阻塞调用代码的时机,因此它允许更高级别的功能决定自己的阻塞合并发机制,而不是将getXX功能视为同步功能

func getNumByChan() <-chan int {
	var num int
	ch := make(chan int) // 创建一个类型为int的channel
	go func() {
		num = 53
		ch <- num // 推送一个int到ch
	}()

	return ch // 返回chan
}

4、互斥锁

上述三种方法解决的是num在写操作完成后才能读取的情况
不管读写顺序如何,只要求它们不能同时发生——> 互斥锁


// 首先,创建一个结构体,其中包含我们想要返回的值以及一个互斥实例
type NumLock struct {
	val int
	m   sync.Mutex
}

func (num *NumLock) Get() int {
	// The `Lock` method of the mutex blocks if it is already locked
	// if not, then it blocks other calls until the `Unlock` method is called
	// Lock方法
	// 调用结构体对象的Lock方法将会锁定该对象中的变量;如果没有,将会阻塞其他调用,直到该互斥对象的Unlock方法被调用

	num.m.Lock()
	// 直到该方法返回,该实例对象才会被解锁
	defer num.m.Unlock()
	// 返回安全类型的实例对象中的值
	return num.val
}

func (num *NumLock) Set(val int) {
	// 类似于上面的getNum方法,锁定num对象直到写入“num.val”的值完成
	num.m.Lock()
	defer num.m.Unlock()
	num.val = val
}

func getNumByLock() int {
	// 创建一个`NumLock`的示例
	num := &NumLock{}
	// 使用“Set”和“Get”来代替常规的复制修改和读取值,这样就可以确保只有在写操作完成时我们才能进行阅读,反之亦然
	go func() {
		num.Set(53)
	}()
	time.Sleep(500)
	return num.Get()
}

这里要注意,我们无法保证最后取得的num值
当有多个写入和读取操作混合在一起时,使用Mutex互斥可以保证读写的值与预期结果一致

附上结果:

完整代码:

package main

import (
	"fmt"
	"strconv"
	"sync"
	"testing"
	"time"
)

func Test(t *testing.T) {
	fmt.Print("getNum(): ")
	for i := 0; i < 10; i++ {
		fmt.Print(strconv.Itoa(getNum()) + " ")
	}
	fmt.Println()
	fmt.Print("getNumByWaitGroup(): ")
	for i := 0; i < 10; i++ {
		fmt.Print(strconv.Itoa(getNumByWaitGroup()) + " ")
	}
	fmt.Println()
	fmt.Print("getNumByChannel(): ")
	for i := 0; i < 10; i++ {
		fmt.Print(strconv.Itoa(getNumByChannel()) + " ")
	}
	fmt.Println()
	fmt.Print("getNumByChan(): ")
	for i := 0; i < 10; i++ {
		fmt.Print(strconv.Itoa(<-getNumByChan()) + " ")
	}
	fmt.Println()
	fmt.Print("getNumByLock(): ")
	for i := 0; i < 10; i++ {
		fmt.Print(strconv.Itoa(getNumByLock()) + " ")
	}
	fmt.Println()
	fmt.Print("getFact(): ")
	fmt.Println(getFact())
	fmt.Println()
}
func getNum() int {
	var num int
	go func() {
		num = 53
	}()
	time.Sleep(500)
	return num
}

func getNumByWaitGroup() int {
	var num int
	var wg sync.WaitGroup
	wg.Add(1) // 表示有一个任务需要等待,等待任务数+1
	go func() {
		num = 53
		wg.Done() // 完成一个处于等待队列的任务,等待任务-1

		// Done decrements the WaitGroup counter by one.
		// func (wg *WaitGroup) Done() {
		//	wg.Add(-1)
		//}

	}()
	wg.Wait() // 阻塞等待,直到等待队列的任务数为0
	return num
}

func getNumByChannel() int {
	var num int
	ch := make(chan struct{}) // 创建一个类型为结构体的channel,并初始化为空
	go func() {
		num = 53
		ch <- struct{}{} // 推送一个空结构体到ch
	}()
	<-ch // 使程序处于阻塞状态,直到ch获取到推送的值
	return num
}

func getNumByChan() <-chan int {
	var num int
	ch := make(chan int) // 创建一个类型为int的channel
	go func() {
		num = 53
		ch <- num // 推送一个int到ch
	}()

	return ch // 返回chan
}

// 首先,创建一个结构体,其中包含我们想要返回的值以及一个互斥实例
type NumLock struct {
	val int
	m   sync.Mutex
}

func (num *NumLock) Get() int {
	// The `Lock` method of the mutex blocks if it is already locked
	// if not, then it blocks other calls until the `Unlock` method is called
	// Lock方法
	// 调用结构体对象的Lock方法将会锁定该对象中的变量;如果没有,将会阻塞其他调用,直到该互斥对象的Unlock方法被调用

	num.m.Lock()
	// 直到该方法返回,该实例对象才会被解锁
	defer num.m.Unlock()
	// 返回安全类型的实例对象中的值
	return num.val
}

func (num *NumLock) Set(val int) {
	// 类似于上面的getNum方法,锁定num对象直到写入“num.val”的值完成
	num.m.Lock()
	defer num.m.Unlock()
	num.val = val
}

func getNumByLock() int {
	// 创建一个`NumLock`的示例
	num := &NumLock{}
	// 使用“Set”和“Get”来代替常规的复制修改和读取值,这样就可以确保只有在写操作完成时我们才能进行阅读,反之亦然
	go func() {
		num.Set(53)
	}()
	time.Sleep(500)
	return num.Get()
}

func getFact() []string {
	ch := make(chan string)
	//defer close(ch)
	res := make([]string, 0)
	num := &NumLock{}
	go func() {
		for i := 10; i > 0; i-- {
			num.Set(i)
			ch <- strconv.Itoa(num.Get())
		}
		close(ch)
	}()
	for i := range ch {
		res = append(res, i)
	}
	return res
}

典型数据竞态

1、循环计数上的竞态

func main() {
	var wg sync.WaitGroup
	wg.Add(5)
	for i := 0; i < 5; i++ {
		go func() {
			fmt.Println(i) // Not the 'i' you are looking for.
			wg.Done()
		}()
	}
	wg.Wait()
}

函数文字中的变量i与循环使用的变量相同,因此goroutine中的读取与循环增量竞争。
(此程序通常打印55555,而不是01234)
该程序可以通过复制变量来修复:

func main() {
	var wg sync.WaitGroup
	wg.Add(5)
	for i := 0; i < 5; i++ {
		go func(j int) {
			fmt.Println(j) // Good. Read local copy of the loop counter.
			wg.Done()
		}(i)
	}
	wg.Wait()
}

2、意外共享变量

func ParallelWrite(data []byte) chan error {
	res := make(chan error, 2)
	f1, err := os.Create("file1")
	if err != nil {
		res <- err
	} else {
		go func() {
			// This err is shared with the main goroutine,
			// so the write races with the write below.
			_, err = f1.Write(data)
			res <- err
			f1.Close()
		}()
	}
	f2, err := os.Create("file2") // The second conflicting write to err.
	if err != nil {
		res <- err
	} else {
		go func() {
			_, err = f2.Write(data)
			res <- err
			f2.Close()
		}()
	}
	return res
}

修复方法是在goroutines中引入新变量(注意使用:=):

	...
	_, err := f1.Write(data)
	...
	_, err := f2.Write(data)
	...

3、无保护的全局变量

如果从几个goroutine调用以下代码,则会导致service的map产生竞态。同一map的并发读写不安全:

var service map[string]net.Addr

func RegisterService(name string, addr net.Addr) {
	service[name] = addr
}

func LookupService(name string) net.Addr {
	return service[name]
}

To make the code safe, protect the accesses with a mutex:

var (
	service   map[string]net.Addr
	serviceMu sync.Mutex
)

func RegisterService(name string, addr net.Addr) {
	serviceMu.Lock()
	defer serviceMu.Unlock()
	service[name] = addr
}

func LookupService(name string) net.Addr {
	serviceMu.Lock()
	defer serviceMu.Unlock()
	return service[name]
}

4、原始无保护变量

数据竞态也可以发生在原始类型的变量上(bool、int、int64等)

type Watchdog struct{ last int64 }

func (w *Watchdog) KeepAlive() {
	w.last = time.Now().UnixNano() // First conflicting access.
}

func (w *Watchdog) Start() {
	go func() {
		for {
			time.Sleep(time.Second)
			// Second conflicting access.
			if w.last < time.Now().Add(-10*time.Second).UnixNano() {
				fmt.Println("No keepalives for 10 seconds. Dying.")
				os.Exit(1)
			}
		}
	}()
}

即使这种“无辜”的数据竞争也可能导致因内存访问的非原子性、干扰编译器优化或访问处理器内存的重新排序问题而导致难以调试的问题。

这场比赛的一个典型修复方法是使用通道或互斥体。为了保持无锁行为,也可以使用sync/atomic包

type Watchdog struct{ last int64 }

func (w *Watchdog) KeepAlive() {
	atomic.StoreInt64(&w.last, time.Now().UnixNano())
}

func (w *Watchdog) Start() {
	go func() {
		for {
			time.Sleep(time.Second)
			if atomic.LoadInt64(&w.last) < time.Now().Add(-10*time.Second).UnixNano() {
				fmt.Println("No keepalives for 10 seconds. Dying.")
				os.Exit(1)
			}
		}
	}()
}

5、未同步的发送和关闭操作

同一通道上的非同步发送和关闭操作也可能是一个竞态条件

c := make(chan struct{}) // or buffered channel

// The race detector cannot derive the happens before relation
// for the following send and close operations. These two operations
// are unsynchronized and happen concurrently.
go func() { c <- struct{}{} }()
close(c)

根据Go内存模型,通道上的发送发生在该通道的相应接收完成之前。要同步发送和关闭操作,请使用接收操作来保证发送在关闭前完成:

c := make(chan struct{}) // or buffered channel

go func() { c <- struct{}{} }()
<-c
close(c)

到此这篇关于浅谈Golang数据竞态的文章就介绍到这了,更多相关Golang数据竞态内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

浅谈Golang数据竞态

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

浅谈Golang数据竞态

本文主要介绍了浅谈Golang数据竞态,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-02-08

浅谈function(函数)中的动态参数

我们可向函数传递动态参数,*args,**kwargs,首先我们来看*args,示例如下: 1.show(*args)def show(*args): print(args,type(args)) #以元组的形式向列表传递参数 show(1
2022-06-04

浅谈android中数据库的拷贝

SQLiteDatabase不支持直接从assets读取文件,所以要提前拷贝数据库。在读取数据库时,先在项目中建立assets文件夹用于存放外部文件,将数据库文件拷到该目录下。 代码方法:/*** 拷贝数据库至file文件夹下* @para
2022-06-06

浅谈Python数学建模之数据导入

目录一、数据导入是所有数模编程的第一步二、在程序中直接向变量赋值2.1、为什么直接赋值?2.2、直接赋值的问题与注意事项三、Pandas 导入数据3.1、Pandas 读取 Excel 文件3.2、Pandas 读取 csv 文件3.3、P
2022-06-02

浅谈三种数据库的 SQL 注入

目录SQL 注入原理SQL 注入分类1. 数字型注入2. 字符型注入3. 其他类型常见数据库的注入SQL ServermysqloracleSQL 注入原理SQL注入攻击指的是通过构建特殊的输入作为参数传入Web应用程序,而这些输入大都是
2022-08-11

【DB究谈】浅谈对数据库隔离级别的理解

当人们提及数据库管理系统(DBMS),必会提及事务、ACID特性以及事务隔离级别。事务本身是为了保证系统的运行状态最终将处于一致性(满足一组约束条件)的状态而出现的概念,其中的ACID特性中的I(Isolation)要保证在并发操作情况下数据库最终可以处于”一
【DB究谈】浅谈对数据库隔离级别的理解
2021-06-20

浅谈NodeJs之数据库异常处理

本文介绍了NodeJs之数据库异常处理,分享给大家,具体如下: NodeJs版本:4.4.4 数据库链接错误 使用nodejs处理异常最麻烦不过,这里我抛开nodejs提供的domain和一些第三方库专门处理的东西。操作数据库是我们常用的功
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录