我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何用Python进行金融市场文本数据的情感计算

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何用Python进行金融市场文本数据的情感计算

这篇文章将为大家详细讲解有关如何用Python进行金融市场文本数据的情感计算,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

一、tushare介绍

tushare库是目前比较流行的开源免费的经济数据库,tushare有普通版和高级版,其中普通版无需积分就可以使用,而高级版需要使用积分才可使用。

tushare基础班提供了包括:

  • 交易数据,如历史行情、复权数据、实时行情等

  • 投资参考数据,如分配的方案、业绩预告、限售股解禁、基金持股、新浪数据、融资融券

  • 股票分类数据、行业、概念、地域、中小板、创业板、封校警示板生

  • 基本面数据、股票列表、业绩报告(主表)、盈利能力、营运能力、偿债能力等

  • 宏观经济数据,如存款利率、贷款利率、GDP数据、工业品出场价格指数、居民消费节各直属

  • 新闻事件数据,如新浪股吧

  • 龙虎榜数据

  • 银行间同业拆放理论

  • 电影票房

安装

!pip3 install tushare

Run

Collecting tushare[?25l Downloading https://files.pythonhosted.org/packages/a9/8b/2695ad38548d474f4ffb9c95548df126e82adb24e56e2c4f7ce1ef9fbd01/tushare-1.2.43.tar.gz (168kB)[K 100% |████████████████████████████████| 174kB 162kB/s ta :00:01[?25hBuilding wheels for collected packages: tushare Running setup.py bdist_wheel for tushare ... [?25ldone[?25h Stored in directory: /Users/thunderhit/Library/Caches/pip/wheels/4b/28/7b/62d7a4155b34be251c1840e7cecfa4c374812819c59edba760Successfully built tushareInstalling collected packages: tushareSuccessfully installed tushare-1.2.43[33mYou are using pip version 18.1, however version 19.2.3 is available.You should consider upgrading via the 'pip install --upgrade pip' command.[0m

二、新闻数据

新闻事件接口主要提供国内财经、证券、港股和期货方面的滚动新闻,以及个股的信息地lei数据。但目前只有新浪股吧api的接口可用,其他的需要使用tushare高级版。

获取sina财经股吧首页的重点消息。股吧数据目前获取大概17条重点数据,可根据参数设置是否显示消息内容,默认情况是不显示。

参数说明:

  • show_content:boolean,是否显示内容,默认False

返回值说明:

  • title, 消息标题

  • content, 消息内容(show_content=True的情况下)

  • ptime, 发布时间

  • rcounts,阅读次数

调用方法

import tushare as ts#显示详细内容newsdata = ts.guba_sina(show_content=True)newsdata.head(10)

如何用Python进行金融市场文本数据的情感计算

三、读取词典

之前制作的中文金融情感词典是csv文件格式,我们使用pandas读取

import pandas as pddf = pd.read_csv('CFSD/pos.csv', encoding='gbk')df.head()

如何用Python进行金融市场文本数据的情感计算

我们将读取词典定义成函数

def read_dict(file, header): """ file: 词典路径 header: csv文件内字段名,如postive 读取csv词典,返回词语列表 """ df = pd.read_csv(file, encoding='gbk') return list(df[header])poswords = read_dict(file= 'CFSD/pos.csv', header = 'postive')negwords = read_dict(file= 'CFSD/neg.csv', header ='negative')negwords[:5]

run

['闭门造车', '闭塞', '云里雾里', '拖累', '过热']

三、情感分析方法

这里我们对新闻content内容进行情感分析,分析的思路是统计content中正、负词的占比。我们会用到pandas的 df.agg(func)方法对content列进行文本计算。这需要先定义一个待调用的情感计算函数,注意有可能出现分母为0,所以定义的函数使用了try except捕捉0除异常,返回0.

 import jiebadef pos_senti(content): """ content: 待分析文本内容 返回正面词占文本总词语数的比例 """ try: pos_word_num =  words = jieba.lcut(content) for kw in poswords: pos_word_num += words.count(kw) return pos_word_num/len(words) except: return def neg_senti(content): """ content: 待分析文本内容 返回负面词占文本总词语数的比例 """ try: neg_word_num =  words = jieba.lcut(content) for kw in negwords: neg_word_num += words.count(kw) return neg_word_num/len(words) except: return 0

对content列分别施行情感计算函数possenti,negsenti,将得到的得分赋值给pos、neg列

newsdata['pos']=newsdata['content'].agg(pos_senti)newsdata['neg']=newsdata['content'].agg(neg_senti)newsdata.head(10)

如何用Python进行金融市场文本数据的情感计算

我们的数据中出现了pos和neg两个得分,我们还可以定义一个判断函数,判断文本的情绪分类。

  • 当pos比neg大,判断为'正'

  • 当pos比neg小,判断为'负'

这里不严谨,为了教程简单,没考虑相等的情况

newsdata['senti_classification'] = newsdata['pos']>newsdata['neg']newsdata['senti_classification'] = newsdata['senti_classification'].map({True:"正", False:"负"})newsdata.head(10)

如何用Python进行金融市场文本数据的情感计算

总结

其实到这儿,简单的情感计算就实现了。

另外,大家在使用本文时,一定要注意:

  • 本篇Python学习教程使用的情感词典是CFSD中文金融情感词典,大家可以用自己领域的词典,得到poswords和negwords

  • 还有要注意的是情感计算函数(possenti和negsenti),有不同的算法就有不同的结果

  • 正负面倾向判断,我这里比较粗糙,没有考虑相等的中性问题。

注意以上几点,本篇Python学习教程代码就可复用。不过再好的代码,前提是得会python,会懂编程思维,知道如何写代码改代码,不然大家用起来也比较困难。

关于如何用Python进行金融市场文本数据的情感计算就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何用Python进行金融市场文本数据的情感计算

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何用Python进行金融市场文本数据的情感计算

这篇文章将为大家详细讲解有关如何用Python进行金融市场文本数据的情感计算,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。一、tushare介绍tushare库是目前比较流行的开源免费的经济
2023-06-02

在arcgis使用python脚本进行字段计算时是如何解决中文问题的

一、引言在arcgis打开一个图层的属性表,可以对属性表的某个字段进行计算,但是在平常一般都是使用arcgis提供的字段计算器的界面进行傻瓜式的简答的赋值操作,并没有使用到脚本对字段值进行逻辑的操作。由于最近一直在学python脚本,刚好又
2022-06-04

如何使用Python中的socket编程进行不同机器间的数据通信和协同计算

标题:使用Python中的socket编程实现机器间的数据通信和协同计算引言:在计算机领域,不同机器之间的数据通信和协同计算是实现分布式系统和并行计算的关键技术之一。Python中的socket编程是一种常用且强大的网络编程工具,它可以用于
2023-10-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录