我的编程空间,编程开发者的网络收藏夹
学习永远不晚

怎么使用Python实现汉诺塔问题

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

怎么使用Python实现汉诺塔问题

今天小编给大家分享一下怎么使用Python实现汉诺塔问题的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

前言

汉诺塔问题是一个经典的问题。汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,任何时候,在小圆盘上都不能放大圆盘,且在三根柱子之间一次只能移动一个圆盘。问应该如何操作?

1.先谈一下什么是递归?

我自己的理解就是:将自身的问题不断减小规模,直到减小到无法减小为止。(到达递归结束条件)然后从小问题开始解决,小问题逐个解决之后,大问题也就迎刃而解了(递归回来了)

2.简而言之就是:

原问题不断减小为规模更小的原问题,然后小规模的原问题解决了,从而解决原来的大问题!

3.过程为:

减小规模、从小解决、递归回来、解决原问题!!!

4.递归的关键是:

(1)有递归结束条件。

(2)不断调用自身,减小问题规模,向递归结束条件靠拢。

汉诺塔问题

1.问题描述

有三根柱子,分别名为A,B,C。初始时,在柱子A上有n个圆盘,他们从下到上,盘子的大小是从大到小。在移动和摆放的过程中,小盘子必须在大盘子上面。 在保证规则的情况下,将柱子A上的所有盘子,移动到柱子C,移动中可以借助柱子B,但是得保证移动过程中小盘子必须得在大盘子上!!! 请打印出移动过程?

怎么使用Python实现汉诺塔问题

2.问题分析 递归的过程:

(1)将最上面的n-1个盘子,从A借助C移动到B

(2)将最下面的一个盘子,从A移动到C

(3)将最上面的n-1个盘子,从B借助A移动到C

递归的结束条件:

问题规模变成盘子数为0时,因为当盘子数为0时就不需要移动了!!!

3.代码(Python)
# coding:utf-8"""    n为初始时A柱上的盘子数    a为起始盘子所在的柱子    b为中转柱子    c为目的地柱子"""def hanoi(n, a, b, c):    if n > 0:        hanoi(n-1, a, c, b)        print("盘子从%s移动到%s" % (a, c))        hanoi(n-1, b, a, c)hanoi(3, "A", "B", "C")
4.结果展示

怎么使用Python实现汉诺塔问题

以上就是“怎么使用Python实现汉诺塔问题”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

怎么使用Python实现汉诺塔问题

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

怎么使用Python实现汉诺塔问题

今天小编给大家分享一下怎么使用Python实现汉诺塔问题的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。前言汉诺塔问题是一个经
2023-07-06

使用Python实现汉诺塔问题示例

这篇文章主要介绍了使用Python实现汉诺塔问题示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-05-17

递归——汉诺塔问题(python实现)

规则每次移动一个盘子任何时候大盘子在下面,小盘子在上面方法假设共n个盘子当n=1时:直接把A上的一个盘子移动到C上(A->C)当n=2时:把小盘子从A放到B上(A->B)这里开始采用参数,rsc源地址=A,dst目的地址=B把大盘子从A放到
2023-01-30

Python3实现汉诺塔问题

Python3实现汉诺塔问题一、思路二、Python3代码实现三、总结四、参考资料总结归纳为以下3步:把x上的n-1个盘子借助z,移动到y上把x上最下面的盘子移动到z上最后把y上的n-1个盘子借助x移动到,z上,大功告成递归出口:n=1时,
2023-01-31

使用python怎么实现一个汉诺塔游戏

本篇文章给大家分享的是有关使用python怎么实现一个汉诺塔游戏,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。一.汉诺塔汉诺塔问题是一个经典的递归问题,对于这个问题,我们可以把
2023-06-06

java怎么实现汉诺塔

以下是一个使用Java实现汉诺塔问题的示例代码:public class HanoiTower {public static void main(String[] args) {int n = 3; // 汉诺塔的层数char from
2023-10-23

c语言汉诺塔问题怎么解决

解决汉诺塔问题的常见方法是使用递归。以下是使用递归解决C语言汉诺塔问题的示例代码:```c#include void hanoi(int n, char from_rod, char to_rod, char aux_rod) {if (n
2023-10-07

C语言怎么实现汉诺塔

这篇文章主要介绍了C语言怎么实现汉诺塔的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C语言怎么实现汉诺塔文章都会有所收获,下面我们一起来看看吧。1.递归思想简介在c语言中,程序调用自身的编程技巧称为递归( re
2023-06-28

PHP怎么实现汉诺塔算法

本篇内容介绍了“PHP怎么实现汉诺塔算法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
2023-06-20

java基于递归算法实现汉诺塔问题实例

本文实例讲述了java基于递归算法实现汉诺塔问题。分享给大家供大家参考,具体如下:package test;import java.util.List;import java.util.ArrayList;import java.util.
2023-05-31

C#怎么利用递归算法解决汉诺塔问题

本篇内容介绍了“C#怎么利用递归算法解决汉诺塔问题”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、什么是递归方法调用自己的行为就是递归,递
2023-06-30

C语言递归函数与汉诺塔问题怎么解决

今天小编给大家分享一下C语言递归函数与汉诺塔问题怎么解决的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。递归函数直接或者间接调
2023-07-02

c语言怎么循环加数组实现汉诺塔

今天小编给大家分享一下c语言怎么循环加数组实现汉诺塔的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。简介汉诺塔问题是学数据结构
2023-06-29

C语言怎么运用函数的递归实现汉诺塔

这篇文章主要讲解了“C语言怎么运用函数的递归实现汉诺塔”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C语言怎么运用函数的递归实现汉诺塔”吧!1、汉诺塔是如何实现的下面是有三个盘子的示例:从左
2023-07-02

Java编程用栈来求解汉诺塔问题的代码实例(非递归)

【题目】   汉诺塔问题比较经典,这里修改一下游戏规则:现在限制不能从最左侧的塔直接移动到最右侧,也不能从最右侧直接移动到最左侧,而是必须经过中间。求当塔有N层的时候,打印最优移动过程和最优移动总步数。【解答】   上一篇用的是递归的方法解
2023-05-31

Java怎么通过递归算法解决迷宫与汉诺塔及八皇后问题

本篇内容介绍了“Java怎么通过递归算法解决迷宫与汉诺塔及八皇后问题”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!1.递归的重要规则在执行一
2023-06-30

怎么使用Python pypinyin库实现汉字转拼音

这篇文章主要介绍了怎么使用Python pypinyin库实现汉字转拼音,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。一、前言pypinyin库,主要有几下几个特性:智能匹配
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录