我的编程空间,编程开发者的网络收藏夹
学习永远不晚

怎么使用Pytorch+PyG实现MLP

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

怎么使用Pytorch+PyG实现MLP

这篇文章主要讲解了“怎么使用Pytorch+PyG实现MLP”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Pytorch+PyG实现MLP”吧!

项目环境:

  • 平台:Windows10

  • 语言环境:python3.7

  • 编译器:PyCharm

  • PyTorch版本:1.11.0

  • PyG版本:2.1.0

一、导入相关库

本项目我们需要结合两个库,一个是Pytorch,因为还需要按照torch的网络搭建模型进行书写,第二个是PyG,因为在torch中并没有关于图网络层的定义,所以需要torch_geometric这个库来定义一些图层。

import torchimport torch.nn.functional as Fimport torch.nn as nnimport torch_geometric.nn as pyg_nnfrom torch_geometric.datasets import Planetoid

二、加载Cora数据集

本文使用的数据集是比较经典的Cora数据集,它是一个根据科学论文之间相互引用关系而构建的Graph数据集合,论文分为7类,共2708篇。

  • Genetic_Algorithms

  • Neural_Networks

  • Probabilistic_Methods

  • Reinforcement_Learning

  • Rule_Learning

  • Theory

这个数据集是一个用于图节点分类的任务,数据集中只有一张图,这张图中含有2708个节点,10556条边,每个节点的特征维度为1433。

# 1.加载Cora数据集dataset = Planetoid(root='./data/Cora', name='Cora')

三、定义MLP网络

这里我们就不重点介绍MLP网络了,相信大家能够掌握基本原理,本文我们使用的是PyG定义网络层,在PyG中已经定义好了MLP这个层,该层采用的就是感知机机制。

怎么使用Pytorch+PyG实现MLP

对于MLP的常用参数:

  • channel_list:样本输入层、中间层、输出层维度的列表

  • in_channels:每个样本的输入维度,就是每个节点的特征维度

  • hidden_channels:单层神经网络中间的隐层大小

  • out_channels:经过MLP后映射成的新的维度,就是经过MLP后每个节点的维度长度

  • num_layers:感知机层数

  • dropout:每个隐藏层的丢弃率,如果存在多层可以使用列表传入

  • act:激活函数,默认为relu

  • bias:训练一个偏置b

对于本文实现的 pyg_nn.MLP([num_node_features, 32, 64, 128]) 的含义就是定义一个三层的感知机网络,按照 PyTorch 实现等价于如下代码:

lin_1 = nn.Linear(num_node_features, 32)lin_2 = nn.Linear(32, 64)lin_3 = nn.Linear(64, 128)

对于 PyG 中实现起来较为简单,以列表方式传入所以隐层大小即可,第一个维度代表样本的输入特征维度,最后一个维度代表输出的维度大小,中间维度代表隐层的大小,所以 len(channel_list) - 1 代表 MLP 的层数,这种方式是以传入 channel_list 方式定义模型,还可以按照正常参数方式进行传递定义,代码如下:

pyg_nn.MLP(in_channels=16,   hidden_channels=32,   out_channels=128,   num_layers=3)

网络定义代码如下:

# 2.定义MLP网络class MLP(nn.Module):    def __init__(self, num_node_features, num_classes):        super(MLP, self).__init__()        self.lin_1 = pyg_nn.MLP([num_node_features, 32, 64, 128])        self.lin_2 = pyg_nn.MLP([128, 64, 32, num_classes])            def forward(self, data):        x, edge_index = data.x, data.edge_index                x = self.lin_1(x, edge_index)        x = F.relu(x)        x = F.dropout(x, training=self.training)        x = self.lin_2(x, edge_index)                return F.log_softmax(x, dim=1)

上面网络我们定义了两个MLP层,第一层的参数的输入维度就是初始每个节点的特征维度,输出维度是128。

第二个层的输入维度为128,输出维度为分类个数,因为我们需要对每个节点进行分类,最终加上softmax操作。

四、定义模型

下面就是定义了一些模型需要的参数,像学习率、迭代次数这些超参数,然后是模型的定义以及优化器及损失函数的定义,和pytorch定义网络是一样的。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备epochs = 10 # 学习轮数lr = 0.003 # 学习率num_node_features = dataset.num_node_features # 每个节点的特征数num_classes = dataset.num_classes # 每个节点的类别数data = dataset[0].to(device) # Cora的一张图# 3.定义模型model = MLP(num_node_features, num_classes).to(device)optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 优化器loss_function = nn.NLLLoss() # 损失函数

五、模型训练

模型训练部分也是和pytorch定义网络一样,因为都是需要经过前向传播、反向传播这些过程,对于损失、精度这些指标可以自己添加。

# 训练模式model.train()for epoch in range(epochs):    optimizer.zero_grad()    pred = model(data)        loss = loss_function(pred[data.train_mask], data.y[data.train_mask]) # 损失    correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item() # epoch正确分类数目    acc_train = correct_count_train / data.train_mask.sum().item() # epoch训练精度        loss.backward()    optimizer.step()        if epoch % 20 == 0:        print("【EPOCH: 】%s" % str(epoch + 1))        print('训练损失为:{:.4f}'.format(loss.item()), '训练精度为:{:.4f}'.format(acc_train))print('【Finished Training!】')

六、模型验证

下面就是模型验证阶段,在训练时我们是只使用了训练集,测试的时候我们使用的是测试集,注意这和传统网络测试不太一样,在图像分类一些经典任务中,我们是把数据集分成了两份,分别是训练集、测试集,但是在Cora这个数据集中并没有这样,它区分训练集还是测试集使用的是掩码机制,就是定义了一个和节点长度相同纬度的数组,该数组的每个位置为True或者False,标记着是否使用该节点的数据进行训练。

# 模型验证model.eval()pred = model(data)# 训练集(使用了掩码)correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item()acc_train = correct_count_train / data.train_mask.sum().item()loss_train = loss_function(pred[data.train_mask], data.y[data.train_mask]).item()# 测试集correct_count_test = pred.argmax(axis=1)[data.test_mask].eq(data.y[data.test_mask]).sum().item()acc_test = correct_count_test / data.test_mask.sum().item()loss_test = loss_function(pred[data.test_mask], data.y[data.test_mask]).item()print('Train Accuracy: {:.4f}'.format(acc_train), 'Train Loss: {:.4f}'.format(loss_train))print('Test  Accuracy: {:.4f}'.format(acc_test), 'Test  Loss: {:.4f}'.format(loss_test))

七、结果

【EPOCH: 】1
训练损失为:1.9856 训练精度为:0.1786
【EPOCH: 】21
训练损失为:1.5419 训练精度为:0.4643
【EPOCH: 】41
训练损失为:1.1653 训练精度为:0.6500
【EPOCH: 】61
训练损失为:0.8062 训练精度为:0.8071
【EPOCH: 】81
训练损失为:0.5322 训练精度为:0.9286
【EPOCH: 】101
训练损失为:0.3487 训练精度为:0.9714
【EPOCH: 】121
训练损失为:0.2132 训练精度为:0.9571
【EPOCH: 】141
训练损失为:0.1043 训练精度为:0.9929
【EPOCH: 】161
训练损失为:0.0601 训练精度为:1.0000
【EPOCH: 】181
训练损失为:0.0420 训练精度为:1.0000
【Finished Training!】

>>>Train Accuracy: 1.0000 Train Loss: 0.0092
>>>Test  Accuracy: 0.1800 Test  Loss: 1.9587


训练集测试集
Accuracy1.00000.1800
Loss0.00921.9587

完整代码

import torchimport torch.nn.functional as Fimport torch.nn as nnimport torch_geometric.nn as pyg_nnfrom torch_geometric.datasets import Planetoid# 1.加载Cora数据集dataset = Planetoid(root='./data/Cora', name='Cora')# 2.定义MLP网络class MLP(nn.Module):    def __init__(self, num_node_features, num_classes):        super(MLP, self).__init__()        self.lin_1 = pyg_nn.MLP([num_node_features, 32, 64, 128])        self.lin_2 = pyg_nn.MLP([128, 64, 32, num_classes])            def forward(self, data):        x, edge_index = data.x, data.edge_index                x = self.lin_1(x, edge_index)        x = F.relu(x)        x = F.dropout(x, training=self.training)        x = self.lin_2(x, edge_index)                return F.log_softmax(x, dim=1)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备epochs = 200 # 学习轮数lr = 0.0003 # 学习率num_node_features = dataset.num_node_features # 每个节点的特征数num_classes = dataset.num_classes # 每个节点的类别数data = dataset[0].to(device) # Cora的一张图# 3.定义模型model = MLP(num_node_features, num_classes).to(device)optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 优化器loss_function = nn.NLLLoss() # 损失函数# 训练模式model.train()for epoch in range(epochs):    optimizer.zero_grad()    pred = model(data)        loss = loss_function(pred[data.train_mask], data.y[data.train_mask]) # 损失    correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item() # epoch正确分类数目    acc_train = correct_count_train / data.train_mask.sum().item() # epoch训练精度        loss.backward()    optimizer.step()        if epoch % 20 == 0:        print("【EPOCH: 】%s" % str(epoch + 1))        print('训练损失为:{:.4f}'.format(loss.item()), '训练精度为:{:.4f}'.format(acc_train))print('【Finished Training!】')# 模型验证model.eval()pred = model(data)# 训练集(使用了掩码)correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item()acc_train = correct_count_train / data.train_mask.sum().item()loss_train = loss_function(pred[data.train_mask], data.y[data.train_mask]).item()# 测试集correct_count_test = pred.argmax(axis=1)[data.test_mask].eq(data.y[data.test_mask]).sum().item()acc_test = correct_count_test / data.test_mask.sum().item()loss_test = loss_function(pred[data.test_mask], data.y[data.test_mask]).item()print('Train Accuracy: {:.4f}'.format(acc_train), 'Train Loss: {:.4f}'.format(loss_train))print('Test  Accuracy: {:.4f}'.format(acc_test), 'Test  Loss: {:.4f}'.format(loss_test))

感谢各位的阅读,以上就是“怎么使用Pytorch+PyG实现MLP”的内容了,经过本文的学习后,相信大家对怎么使用Pytorch+PyG实现MLP这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

怎么使用Pytorch+PyG实现MLP

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

怎么使用Pytorch+PyG实现MLP

这篇文章主要讲解了“怎么使用Pytorch+PyG实现MLP”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Pytorch+PyG实现MLP”吧!项目环境:平台:Windows10语言
2023-07-05

使用Pytorch+PyG实现MLP的详细过程

图神经网络是最近AI领域最热门的方向之一,下面这篇文章主要给大家介绍了关于使用Pytorch+PyG实现MLP的详细过程,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
2023-03-03

Pytorch结合PyG实现MLP过程详解

这篇文章主要为大家介绍了Pytorch结合PyG实现MLP过程详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-17

Pytorch怎么实现Transformer

本篇内容主要讲解“Pytorch怎么实现Transformer”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Pytorch怎么实现Transformer”吧!一、构造数据1.1 句子长度# 关于
2023-06-30

怎么使用PyTorch实现随机搜索策略

本篇内容主要讲解“怎么使用PyTorch实现随机搜索策略”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么使用PyTorch实现随机搜索策略”吧!1. 随机搜索策略一种简单但有效的方法是将智能体
2023-07-02

Pytorch nn.Dropout怎么使用

这篇文章主要介绍“Pytorch nn.Dropout怎么使用”,在日常操作中,相信很多人在Pytorch nn.Dropout怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Pytorch nn.Dr
2023-07-05

PyTorch torch.utils.data.Dataset怎么使用

本篇内容主要讲解“PyTorch torch.utils.data.Dataset怎么使用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“PyTorch torch.utils.data.Data
2023-07-05

Pytorch怎么使用transforms

这篇文章主要介绍Pytorch怎么使用transforms,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!首先,这次讲解的tansforms功能,通俗地讲,类似于在计算机视觉流程里的图像预处理部分的数据增强。trans
2023-06-22

怎么利用PyTorch实现图像识别

这篇文章主要介绍“怎么利用PyTorch实现图像识别”,在日常操作中,相信很多人在怎么利用PyTorch实现图像识别问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么利用PyTorch实现图像识别”的疑惑有所
2023-07-05

Python中Pytorch怎么使用

这篇文章将为大家详细讲解有关Python中Pytorch怎么使用,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、TensorTensor(张量是一个统称,其中包括很多类型):0阶张量:标量、常数、0-D
2023-06-15

怎么利用PyTorch实现爬山算法

这篇文章主要介绍“怎么利用PyTorch实现爬山算法”,在日常操作中,相信很多人在怎么利用PyTorch实现爬山算法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么利用PyTorch实现爬山算法”的疑惑有所
2023-07-02

PyTorch中torch.utils.data.DataLoader怎么使用

这篇文章主要介绍“PyTorch中torch.utils.data.DataLoader怎么使用”,在日常操作中,相信很多人在PyTorch中torch.utils.data.DataLoader怎么使用问题上存在疑惑,小编查阅了各式资料,
2023-07-02

pytorch中nn.Dropout怎么使用

小编给大家分享一下pytorch中nn.Dropout怎么使用,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!看代码吧~Class USeDropout(nn.Module): def __init__(self):
2023-06-15

pytorch中[..., 0]怎么使用

这篇文章将为大家详细讲解有关pytorch中[..., 0]怎么使用,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。在看程序的时候看到了x[…, 0]的语句不是很理解,后来自己做实验略微了解,以此记录方便自
2023-06-15

pytorch中nn.RNN()怎么使用

这篇文章主要介绍“pytorch中nn.RNN()怎么使用”,在日常操作中,相信很多人在pytorch中nn.RNN()怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”pytorch中nn.RNN()怎
2023-07-04

Pytorch中怎么使用TensorBoard

本文小编为大家详细介绍“Pytorch中怎么使用TensorBoard”,内容详细,步骤清晰,细节处理妥当,希望这篇“Pytorch中怎么使用TensorBoard”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。一
2023-07-02

Python中如何使用PyTorch实现WGAN

这篇文章给大家分享的是有关Python中如何使用PyTorch实现WGAN的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。1.GAN简述在GAN中,有两个模型,一个是生成模型,用于生成样本,一个是判别模型,用于判断
2023-06-25

怎么使用pytorch框架

这篇文章主要讲解了“怎么使用pytorch框架”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用pytorch框架”吧!  中文新闻情感分类 Bert-Pytorch-transform
2023-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录