我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++图解单向链表类模板和iterator迭代器类模版详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++图解单向链表类模板和iterator迭代器类模版详解

链表用来构建许多其它数据结构,如堆栈,队列和他们的派生。

对于非线性的链表,可以参见相关的其他数据结构,例如二叉树、图等。

1.链表介绍

常见的线性链表分为三种

单链表: 每个结点都含有指向其后继结点的地址信息

双向链表: 每个结点都有指向其前驱结点和后继结点的地址信息

循环双向链表: 在双向链表的基础上,将数据结点头的前驱信息保存数据结点尾部地址,数据结点尾部的后驱信息保存数据结点头地址、

链表中包含的关键词如下所示:

  • 链表头: 也就是head指针, 每次访问链表时都可以从这个头指针依次遍历链表中的每个元素
  • 头结点: 数据内容无效,指向数据结点
  • 数据结点: 存储数据元素的结点
  • 尾结点:数据内容无效,位于数据结点尾部,标志最后一个结点

对于链表而言,链表头必须存在。而头结点和尾结点在有些链表中是不存在的,但是拥有头结点会有很大的好处

拥有头结点的好处:

每次插入删除时,无需判断是否为第一个结点(对于无头结点的链表,每次都要判断如果是第一个结点,需要将前驱信息设置为链表头,并且将链表头的后继信息设置为第一个结点)

如果是双向循环链表(下章实现),我们可以通过头结点的前驱节点轻松获取到最后一个数据结点,从而实现append函数进行尾部插入结点,无需每次遍历链表至末尾再插入结点.

1.1 单链表插入某个节点流程

如下图所示:

从头结点开始遍历,通过要插入的索引号-1找到pre指针后,代码如下所示:

Node* pre = getNode(i-1);     // 获取上个节点
Node* node = new Node();      // new一个新节点
node->data = value;           // 设置data数据元素
node->next = pre->next;       // 将新节点的next链接到下个节点
pre->next = node;             // 将前个节点的next链接到创建的新节点
m_length += 1;

1.2 单链表删除某个节点流程

如下图所示:

从头结点开始遍历,通过要删除的索引号-1找到current指针的前一个结点pre后,代码如下所示:

Node* pre = getNode(i-1);
Node* current = pre->next;     // 获取要删除的节点
pre->next = current->next;     // 将当前节点的下个节点链接到前一个的next中
delete current;                // delete空闲的节点
m_length -= 1;

1.3 单链表清除所有节点流程

代码如下所示:

    while(m_header.next) {
        Node* node = m_header.next;
        m_header.next = node->next;
        delete node;
    }
    m_length = 0;

2.实现单链表

需要实现的函数:

int length() : 获取链表数据长度

void clear() : 清空链表所有数据

Node* getNode(int i): 获取i处的节点

bool insert(int i, const T& value) : 在索引号i处插入一个新的数据

bool remove(int i) : 删除链表中索引号i所在的数据

T get(int i): 获取i处的数据

bool set(int i, const T& value): 设置i处的数据

void append(const T &value) :在链表尾部追加一个新的数据

void prepend(const T &value) : 在链表头部插入一个新的数据

void clear() : 清空链表内容

LinkedList& operator << (const T& value):  重写<<操作符,方便尾部追加数据

int indexOf(const T &value, int from =0) : 在链表中向前查找value所在的索引号.默认从from索引号0(表头)开始.如果未找到则返回-1.

2.1indexOf()函数示例如下所示:

LinkedList<int> list;
list << 1 << 2 << 4 << 2 << 6;
cout<<"from index0 find 2 :"<<list.indexOf(2)<<endl;    //returns 1
cout<<"from index1 find 2 :"<<list.indexOf(2, 1)<<endl; //returns 1
cout<<"from index2 find 2 :"<<list.indexOf(2, 2)<<endl; //从索引号2开始查找,returns 3
cout<<"from index0 find 3 :"<<list.indexOf(3)<<endl;    //returns -1

打印效果如下所示:

本章SingleLinkedList.h的整个代码实现如下所示(包含迭代器类):

#ifndef SingleLinkedLIST_H
#define SingleLinkedLIST_H
#include "throw.h"
// throw.h里面定义了一个ThrowException抛异常的宏,如下所示:
//#include <iostream>
//using namespace std;
//#define ThrowException(errMsg)  {cout<<__FILE__<<" LINE"<<__LINE__<<": "<<errMsg<<endl; (throw errMsg);}

template <typename T>
struct SingleLinkedNode
{
    inline SingleLinkedNode(){ }
    inline SingleLinkedNode(const T &arg): value(arg) { }
    SingleLinkedNode *next;        // 后驱节点
    T value;                 // 节点值
};

template <class T>
class SingleLinkedList
{
protected:
    typedef SingleLinkedNode<T> Node;
    Node m_header;          // 头节点
    int m_length;
public:
    SingleLinkedList() { m_header.next = nullptr; m_length = 0; }
    ~SingleLinkedList() { clear(); }
    void append(const T &value) { insert(m_length, value);}
    void prepend(const T &value) {insert(0, value);}
    int length()  {return m_length;}
    Node* begin() {return m_header.next;}
    static bool rangeValid(int i,int len)  {return ((i>=0) && (i<len));}
    
    Node* getNode(int i)
    {
        Node* ret = &m_header;
        while((i--)>-1) {       // 由于有头节点所以,i为0时,其实ret = m_header->n
            ret = ret->next;
        }
        return ret;
    }
    
    bool insert(int i, const T& value)
    {
        if (!((i>=0) && (i<=m_length))) {
            ThrowException("Invalid parameter i to get value ...");
            return false;
        }
        Node* pre = getNode(i-1);
        Node* node = new Node(value);    // new一个新节点
        node->next = pre->next;          // 将新节点的next链接到下个节点
        pre->next = node;                // 将前个节点的next链接到创建的新节点
        m_length +=1;
        return true;
    }
    
    bool remove(int i)
    {
        if (!rangeValid(i, m_length)) {
            ThrowException("Invalid parameter i to get value ...");
            return false;
        }
        Node* pre = getNode(i-1);
        Node* current = pre->next;		 // 获取要删除的节点
        pre->next = current->next;       // 将当前节点的下个节点链接到前一个的next中
        delete current;                  // delete空闲的节点
        m_length -=1;
        return true;
    }
    
    T get(int i)
    {
        T ret;
        if (!rangeValid(i, m_length)) {
            ThrowException("Invalid parameter i to get value ...");
        } else {
            ret = getNode(i)->value;
        }
        return ret;
    }
    
    bool set(int i, const T& value)
    {
        if (!rangeValid(i, m_length)) {
            ThrowException("Invalid parameter i to get value ...");
            return false;
        }
        getNode(i)->value = value;
        return true;
    }
    void clear()
    {
        while(m_header.next) {
            Node* node = m_header.next;
            m_header.next = node->next;
            delete node;
        }
        m_length = 0;
    }
    SingleLinkedList<T>& operator << (const T& value)
    {
        append(value);
        return *this;
    }
    
    int indexOf(const T &value, int from =0)
    {
        int ret = 0;
        Node* node = m_header.next;
        while(node) {
           if (ret >= from && node->value == value) {
               return ret;
           }
           node = node->next;
           ret+=1;
        }
        return -1;
    }
};

template <class T>
class SingleLinkedListIterator
{
    typedef SingleLinkedNode<T> Node;
    SingleLinkedList<T> *list;
    Node *m_current;     // 当前指标
public:
    explicit SingleLinkedListIterator(SingleLinkedList<T> &l):list(&l) { m_current = l.begin(); }
    void toBegin() { m_current = list->begin(); }
    bool hasNext()  { return (m_current); }
    T& next() { Node *ret = m_current;  m_current = m_current->next; return ret->value; }
    T& value()
    {
        if (m_current == nullptr) {
            ThrowException(" Current value is empty ...");
        }
        return m_current->value;
    }
    T& move(int i)  {
        if (!list->rangeValid(i, list->length())) {
            ThrowException("Invalid parameter i to get value ...");
        }
        m_current = list->getNode(i);
        return value();
    }
};
#endif // SingleLinkedLIST_H

测试代码如下所示:

    SingleLinkedList<int> list;
    for(int i = 0; i< 5; i++)
      list.append(i);
    for(int i = 0; i< 5; i++)
      list<<i+5;
    cout<<"print:"<<endl;
    cout<<"list.length:"<<list.length()<<endl;
    for(int i = 0; i< list.length(); i++){
        cout<<" "<<list.get(i)<<" ";
    }
    cout<<endl;
    // 修改链表数据
    list.set(1,100);
    list.set(2,200);
    list.remove(3);
    list.insert(5,500);
    cout<<"changed:"<<endl;
    cout<<"list.length:"<<list.length()<<endl;
    for(int i = 0; i< list.length(); i++){
        cout<<" "<<list.get(i)<<" ";
    }
    cout<<endl;

运行打印:

3.实现一个迭代器来优化链表遍历

迭代器(iterator)有时又称光标(cursor)是程序设计的软件设计模式,可在容器对象(container,例如链表或数组)上遍访的接口,设计人员无需关心容器对象的内存分配的实现细节。

3.1 为什么要实现一个迭代器?

比如我们刚刚写的遍历链表代码:

for(int i = 0; i< list.length(); i++){        // 时间复杂度为O(n)
        cout<<" "<<list.get(i)<<" ";         // get函数的时间复杂度为O(n)
}

每次for循环调用链表的get时,都会重复去遍历链表,所以遍历一个链表需要的时间复杂度为O(n^2),所以我们需要实现迭代器来优化链表遍历

迭代器需要实现以下几个函数:

  • bool hasNext(): 是否有下个节点
  • T &next(): 移动光标到下一个节点,并返回之前的值
  • T &value(): 获取当前光标的节点数据
  • void toBegin(): 将迭代器的光标定位到开头位置
  • T& move(int i): 将迭代器当前光标定位到i位置处,并返回当前位置的值

迭代器类实现如下所示:


template <class T>
class SingleLinkedListIterator
{
    typedef SingleLinkedNode<T> Node;
    SingleLinkedList<T> *list;
    Node *m_current;     // 当前指标
public:
    explicit SingleLinkedListIterator(SingleLinkedList<T> &l):list(&l) { m_current = l.begin(); }
    void toBegin() { m_current = list->begin(); }
    bool hasNext()  { return (m_current); }
    T& next() { Node *ret = m_current;  m_current = m_current->next; return ret->value; }
    T& value()
    {
        if (m_current == nullptr) {
            ThrowException(" Current value is empty ...");
        }
        return m_current->value;
    }
    T& move(int i)  {
        if (!list->rangeValid(i, list->length())) {
            ThrowException("Invalid parameter i to get value ...");
        }
        m_current = list->getNode(i);
        return value();
    }
};

示例代码如下所示:

    SingleLinkedList<int> list;
    list<<1<<4<<5<<6<<8;
    SingleLinkedListIterator<int> it(list);
    cout<<"print:"<<endl;
    cout<<"list.length:"<<list.length()<<endl;
    while (it.hasNext())        // 通过迭代器让时间复杂度为O(n)
        cout<<it.next()<<endl;
    cout<<endl;
    cout<<"moved:"<<endl;
    it.move(2);
    while (it.hasNext())        // 通过迭代器让时间复杂度为O(n)
        cout<<it.next()<<endl;

打印如下所示:

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注编程网的更多内容!    

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++图解单向链表类模板和iterator迭代器类模版详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++中单向链表类模板和iterator迭代器类的示例分析

这篇文章主要介绍了C++中单向链表类模板和iterator迭代器类的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。链表用来构建许多其它数据结构,如堆栈,队列和他们的派
2023-06-29

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录