Pandas.DataFrame重置Series的索引index(reset_index)
如果使用reset_index()方法,则可以将pandas.DataFrame,pandas.Series的索引索引(行名称,行标签)重新分配为从0开始的序列号(行号)。
如果将行号用作索引,则通过排序更改行的顺序或删除行并得到缺少的号码时,重新索引会更容易。
当行名(行标签)用作索引时,它也可用于删除当前索引或恢复数据列。您可以使用set_index()和reset_index()将索引更改(重置)到另一列。
将描述以下内容。
使用reset_index()将索引重新分配给序列号
- 基本用法
- 删除原始索引:参数drop
- 更改原始对象:参数inplace
使用reset_index()和set_index()将索引更改为另一列(重置)
以下面的数据为例。
import pandas as pd
df = pd.read_csv('./data/21/sample_pandas_normal.csv')
print(df)
# name age state point
# 0 Alice 24 NY 64
# 1 Bob 42 CA 92
# 2 Charlie 18 CA 70
# 3 Dave 68 TX 70
# 4 Ellen 24 CA 88
# 5 Frank 30 NY 57
该示例为pandas.DataFrame,但pandas.Series也具有reset_index()。两个参数的用法相同。
使用reset_index()将索引重新分配给序列号
使用sort_values()对行进行排序以进行说明。有关排序的详细信息,请参见以下文章。
pandas.DataFrame,Series排序(sort_values,sort_index)
df.sort_values('state', inplace=True)
print(df)
# name age state point
# 1 Bob 42 CA 92
# 2 Charlie 18 CA 70
# 4 Ellen 24 CA 88
# 0 Alice 24 NY 64
# 5 Frank 30 NY 57
# 3 Dave 68 TX 70
基本用法
由于索引已经分散,因此将它们重新分配给从0开始的连续数字。
如果在不指定任何参数的情况下使用reset_index(),则序列号将成为新索引,而原始索引将保留为新列。
df_r = df.reset_index()
print(df_r)
# index name age state point
# 0 1 Bob 42 CA 92
# 1 2 Charlie 18 CA 70
# 2 4 Ellen 24 CA 88
# 3 0 Alice 24 NY 64
# 4 5 Frank 30 NY 57
# 5 3 Dave 68 TX 70
删除原始索引:参数drop
如果参数drop为True,则原始索引将被删除并且不会保留。
df_r = df.reset_index(drop=True)
print(df_r)
# name age state point
# 0 Bob 42 CA 92
# 1 Charlie 18 CA 70
# 2 Ellen 24 CA 88
# 3 Alice 24 NY 64
# 4 Frank 30 NY 57
# 5 Dave 68 TX 70
更改原始对象:参数inplace
默认情况下,原始对象不会更改,并且会返回一个新对象,但是如果inplace参数为True,则会更改原始对象。
df.reset_index(inplace=True, drop=True)
print(df)
# name age state point
# 0 Bob 42 CA 92
# 1 Charlie 18 CA 70
# 2 Ellen 24 CA 88
# 3 Alice 24 NY 64
# 4 Frank 30 NY 57
# 5 Dave 68 TX 70
使用reset_index()和set_index()将索引更改为另一列(重置)
如果将行名设置为索引而不是数字。
df = pd.read_csv('./data/21/sample_pandas_normal.csv', index_col=0)
print(df)
# age state point
# name
# Alice 24 NY 64
# Bob 42 CA 92
# Charlie 18 CA 70
# Dave 68 TX 70
# Ellen 24 CA 88
# Frank 30 NY 57
如果使用reset_index()方法,则将序列号设置为索引,并将原始索引添加到data列。
df_r = df.reset_index()
print(df_r)
# name age state point
# 0 Alice 24 NY 64
# 1 Bob 42 CA 92
# 2 Charlie 18 CA 70
# 3 Dave 68 TX 70
# 4 Ellen 24 CA 88
# 5 Frank 30 NY 57
如果将set_index()照原样应用于原始DataFrame,则会删除原始索引。
df_s = df.set_index('state')
print(df_s)
# age point
# state
# NY 24 64
# CA 42 92
# CA 18 70
# TX 68 70
# CA 24 88
# NY 30 57
如果要将原始索引保留为数据字符串,则可以在reset_index()之后使用set_index()。
df_rs = df.reset_index().set_index('state')
print(df_rs)
# name age point
# state
# NY Alice 24 64
# CA Bob 42 92
# CA Charlie 18 70
# TX Dave 68 70
# CA Ellen 24 88
# NY Frank 30 57
注意,为方便起见,在此示例中将具有重叠值的列设置为索引,但是如果索引值不重叠(每个值都是唯一的),则更容易选择数据。
到此这篇关于Pandas.DataFrame重置Series的索引index(reset_index)的文章就介绍到这了,更多相关Pandas.DataFrame重置Series索引内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341