我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Logistic回归(逻辑回归)及python代码实现

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Logistic回归(逻辑回归)及python代码实现

文章目录

Logistic(Logistic Regression,LR)回归

原理讲解

在模式识别问题中,所关心的量是分类,比如是否会患有某种疾病,这时就不能用简单的线性回归来完成这个问题了。为了解决次问题,我们引入了非线性激活函数 g : RD → ( 0 , 1 ) g:{\mathbb R}^D\to(0,1) g:RD(0,1)来预测类别标签的后验概率 p ( y = 1 ∣ x) p(y=1|\bf x) p(y=1∣x),其中 y ∈ { 0 , 1 } y\in\{0,1\} y{0,1},函数 g g g的作用是把线性函数的值域从实数区间挤压到0和1之间
在Logistic回归中,激活函数的表达式为: σ(x)= 1 1 + e − x \sigma(x)=\frac{1}{1+e^{-x}} σ(x)=1+ex1
标签 y = 1 y=1 y=1的后验概率为 p(y=1∣x)=σ( w T x)= 1 1 + e − w T x ⋯(1) p(y=1|{\bf x})=\sigma({\bf w}^{\rm T}{\bf {x}})=\frac{1}{1+e^{-{\bf w}^{\rm T}{\bf {x}}}}\cdots(1) p(y=1∣x)=σ(wTx)=1+ewTx1(1)
这里, x = [ x1 , ⋯   , xD , 1 ]T {\bf x}=[x_1,\cdots,x_D,1]^{\rm T} x=[x1,,xD,1]T w = [ w1 , ⋯   , wD , b ]T {\bf w}=[w_1,\cdots,w_D,b]^{\rm T} w=[w1,,wD,b]T分别为D+1维的增广特征向量与增广权重向量
标签 y = 0 y=0 y=0的后验概率为 p(y=0∣x)=1−p(y=1∣x)= e − w T x 1 + e − w T x p(y=0|{\bf x})=1-p(y=1|{\bf x})=\frac{e^{-{\bf w}^{\rm T}{\bf {x}}}}{1+e^{-{\bf w}^{\rm T}{\bf {x}}}} p(y=0∣x)=1p(y=1∣x)=1+ewTxewTx
对式(1)进行变换后得到 w T x=log⁡ p ( y = 1 ∣ x ) 1 − p ( y = 1 ∣ x ) =log⁡ p ( y = 1 ∣ x ) p ( y = 0 ∣ x ) {\bf w}^{\rm T}{\bf {x}}=\log \frac{p(y=1|{\bf x})}{1-p(y=1|{\bf x})}=\log \frac{p(y=1|{\bf x})}{p(y=0|{\bf x})} wTx=log1p(y=1∣x)p(y=1∣x)=logp(y=0∣x)p(y=1∣x)上式左边为线性函数,右边为正反后验概率比值(几率)取对数,因此Logistic回归也称为对数几率回归

参数计算

LR采用交叉熵作为损失函数,使用梯度下降进行优化
假设存在N个训练样本 { ( x ( n ) , y ( n ) ) } n = 1 N \{({\bf x}^{(n)},y^{(n)})\}_{n=1}^N {(x(n),y(n))}n=1N,采用LR回归模型对每个样本 x ( n ) {\bf x}^{(n)} x(n)进行预测,输出其标签为1的后验概率,记为y ^ ( n ) {\hat y}^{(n)} y^(n),即 y ^ ( n ) =σ( w T x ( n ) ),1≤n≤N {\hat y}^{(n)}=\sigma({\bf w}^{\rm T}{\bf {x}}^{(n)}),1\leq n\leq N y^(n)=σ(wTx(n)),1nN
由于 y ( n ) ∈ { 0 , 1 } y^{(n)}\in\{0,1\} y(n){0,1},样本 ( x ( n ) , y ( n ) ) ({\bf x}^{(n)},y^{(n)}) (x(n),y(n))的真实条件概率可以表示为 p r ( y ( n ) =1∣ x ( n ) )= y ( n ) , p_r(y^{(n)}=1|{\bf x}^{(n)})=y^{(n)}, pr(y(n)=1∣x(n))=y(n), p r ( y ( n ) =0∣ x ( n ) )=1− y ( n ) p_r(y^{(n)}=0|{\bf x}^{(n)})=1-y^{(n)} pr(y(n)=0∣x(n))=1y(n)
采用交叉熵损失函数,其风险函数为 R(w)=− 1 N ∑ n = 1 N ( p r ( y ( n ) = 1 ∣ x ( n ) ) log ⁡y ^ ( n ) + p r ( y ( n ) = 0 ∣ x ( n ) ) log ⁡ ( 1 −y ^ ( n ) ) ) =− 1 N ∑ n = 1 N ( y ( n ) log ⁡y ^ ( n ) + ( 1 − y ( n ) ) log ⁡ ( 1 −y ^ ( n ) ) ) {\mathcal R}({\bf w})=-\frac{1}{N}\sum_{n=1}^N \left(p_r(y^{(n)}=1|{\bf x}^{(n)})\log {\hat y}^{(n)}+p_r(y^{(n)}=0|{\bf x}^{(n)})\log (1-{\hat y}^{(n)})\right) \\ =-\frac{1}{N}\sum_{n=1}^N\left(y^{(n)}\log {\hat y}^{(n)}+(1-y^{(n)})\log (1-{\hat y}^{(n)}) \right) R(w)=N1n=1N(pr(y(n)=1∣x(n))logy^(n)+pr(y(n)=0∣x(n))log(1y^(n)))=N1n=1N(y(n)logy^(n)+(1y(n))log(1y^(n)))
风险函数关于参数 w \bf w w的偏导数为 ∂ R ( w ) ∂ w =− 1 N ∑ n = 1 N ( y ( n ) y ^ ( n ) ( 1 − y ^ ( n ) ) y ^ ( n ) x ( n ) − ( 1 − y ( n ) ) y ^ ( n ) ( 1 − y ^ ( n ) ) 1 − y ^ ( n ) x ( n ) ) =− 1 N ∑ n = 1 N ( y ( n ) ( 1 −y ^ ( n ) ) x ( n ) − ( 1 − y ( n ) )y ^ ( n ) x ( n ) ) =− 1 N ∑ n = 1 N x ( n ) ( y ( n ) − y ^ ( n ) ) \frac{\partial {\mathcal R}({\bf w})}{\partial {\bf w}}=-\frac{1}{N}\sum_{n=1}^N\left(y^{(n)}\frac{{\hat y}^{(n)}(1-{\hat y}^{(n)})}{{\hat y}^{(n)}}{\bf x}^{(n)}-(1-y^{(n)})\frac{{\hat y}^{(n)}(1-{\hat y}^{(n)})}{1-{\hat y}^{(n)}}{\bf x}^{(n)} \right) \\ =-\frac{1}{N}\sum_{n=1}^N\left(y^{(n)}(1-{\hat y}^{(n)}){\bf x}^{(n)}-(1-y^{(n)}){\hat y}^{(n)}{\bf x}^{(n)} \right) \\ =-\frac{1}{N}\sum_{n=1}^N{\bf x}^{(n)}(y^{(n)}-{\hat y}^{(n)}) wR(w)=N1n=1N(y(n)y^(n)y^(n)(1y^(n))x(n)(1y(n))1y^(n)y^(n)(1y^(n))x(n))=N1n=1N(y(n)(1y^(n))x(n)(1y(n))y^(n)x(n))=N1n=1Nx(n)(y(n)y^(n))
由此我们可以采用梯度下降法更新参数最终得到合适的参数 w \bf w w

python代码实现

生成数据集

我们通过下面的代码自行生成一个样本数量为100的数据集

import numpy as npimport matplotlib.pyplot as plt# 设置随机种子,以便结果可复现np.random.seed(42)# 生成随机数据# 两个特征的均值和方差mean_1 = [2, 2]cov_1 = [[2, 0], [0, 2]]mean_2 = [-2, -2]cov_2 = [[1, 0], [0, 1]]# 生成类别1的样本X1 = np.random.multivariate_normal(mean_1, cov_1, 50)y1 = np.zeros(50)# 生成类别2的样本X2 = np.random.multivariate_normal(mean_2, cov_2, 50)y2 = np.ones(50)# 合并样本和标签X = np.concatenate((X1, X2), axis=0)y = np.concatenate((y1, y2))# 绘制散点图plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1, edgecolor='k')plt.xlabel('Feature 1')plt.ylabel('Feature 2')plt.title('Logistic Regression Dataset')plt.show()

运行结果如下图所示
在这里插入图片描述
图中,类别1为右上部分,标签为0;类别2为左下部分,标签为1

不使用其他库实现

定义激活函数(标准Logistic函数即Sigmoid函数)

def sigmoid(x):    if x>0:        return 1.0/(1.0+np.exp(-x))    else:        return np.exp(x)/(1.0+np.exp(x))

定义LogisticRegression类

class LogisticRegression:    def __init__(self, learning_rate=0.01, num_iterations=1000):        self.learning_rate = learning_rate        self.num_iterations = num_iterations        self.weights = None        self.bias = None    def fit(self, X, y):        num_samples, num_features = X.shape        # 初始化权重和偏置        self.weights = np.zeros(num_features)        self.bias = 0        # 梯度下降        for _ in range(self.num_iterations):            linear_model = np.dot(X, self.weights) + self.bias            y_pred = sigmoid(linear_model)            dw = (1 / num_samples) * np.dot(X.T, (y_pred - y))            db = (1 / num_samples) * np.sum(y_pred - y)            self.weights -= self.learning_rate * dw            self.bias -= self.learning_rate * db    def predict_prob(self, X):        linear_model = np.dot(X, self.weights) + self.bias        y_pred = sigmoid(linear_model)        return y_pred    def predict(self, X, threshold=0.5):        y_pred_prob = self.predict_prob(X)        y_pred = np.zeros_like(y_pred_prob)        y_pred[y_pred_prob >= threshold] = 1        return y_pred

调用LogisticRegression类解决分类问题

# 创建 Logistic 回归模型    logreg = LogisticRegression()        # 训练模型    logreg.fit(X, y)        # 预测样本    X_new = np.array([[2.5, 2.5], [-6.0, -4.0]])    y_pred_prob = logreg.predict_prob(X_new)    y_pred = logreg.predict(X_new)        print("Predicted Probabilities:", y_pred_prob)    print("Predicted Labels:", y_pred)

输出结果为
在这里插入图片描述
预测样本1(2.5,2.5)位于右上部分属于类别1,真实标签为0;预测样本2(-6,-4)位于左下部分属于类别2,真实标签为1,对比输出结果可知,该分类器已训练得合适参数,可完成分类任务

使用sklearn库

我们可以通过使用sklearn库来简洁地实现LR

import numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import accuracy_score#所使用数据集同上X,y# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建Logistic回归模型logreg = LogisticRegression()# 训练模型logreg.fit(X_train, y_train)# 预测测试集y_pred = logreg.predict(X_test)# 计算预测准确率accuracy = accuracy_score(y_test, y_pred)print("Accuracy:", accuracy)

最终测试集上计算得到的准确率accuracy为1,可见该分类器的效果非常好

拓展

logistic回归可以用于分类非线性可分的数据。尽管logistic回归本身是一个线性分类器,但可以通过引入多项式特征、交互特征、组合特征等方法来扩展其能力,从而处理非线性的分类问题。
具体来说,可以通过特征工程的方式将原始特征进行变换,以引入非线性关系。例如,可以通过添加多项式特征,将原始特征的高阶项加入到模型中,例如原始特征的平方项、立方项等。还可以引入交互特征,将不同特征之间的乘积或分割点(例如,做差或做除)作为新的特征。
通过引入这些非线性特征,logistic回归可以更好地捕捉到数据中的非线性关系,从而能够更好地分类非线性可分的数据。需要注意的是,在引入非线性特征时,可能需要进行正则化或其他模型调优技巧,以避免过拟合问题。

来源地址:https://blog.csdn.net/weixin_50744311/article/details/131523136

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Logistic回归(逻辑回归)及python代码实现

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

在R语言中如何实现Logistic逻辑回归的操作

这篇文章主要介绍了在R语言中如何实现Logistic逻辑回归的操作,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。什么是R语言R语言是用于统计分析、绘图的语言和操作环境,属于G
2023-06-14

线性回归与岭回归python代码实现

在线性回归中我们要求的参数为:详细的推导可以参见:http://blog.csdn.net/weiyongle1996/article/details/73727505所以代码实现主要就是实现上式,python代码如下:import num
2023-01-31

python实现逻辑回归的方法示例

本文实现的原理很简单,优化方法是用的梯度下降。后面有测试结果。 先来看看实现的示例代码:# coding=utf-8 from math import expimport matplotlib.pyplot as plt import nu
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录