我的编程空间,编程开发者的网络收藏夹
学习永远不晚

OpenCV实战之图像拼接的示例代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

OpenCV实战之图像拼接的示例代码

背景

图像拼接可以应用到手机中的全景拍摄,也就是将多张图片根据关联信息拼成一张图片;

实现步骤

1、读文件并缩放图片大小;

2、根据特征点和计算描述子,得到单应性矩阵;

3、根据单应性矩阵对图像进行变换,然后平移;

4、图像拼接并输出拼接后结果图;

一、读取文件

第一步实现读取两张图片并缩放到相同尺寸;

代码如下:

img1 = cv2.imread('map1.png')
img2 = cv2.imread('map2.png')

img1 = cv2.resize(img1, (640, 480))
img2 = cv2.resize(img2, (640, 480))

input = np.hstack((img1, img2))
cv2.imshow('input', input)
cv2.waitKey(0)

上图为我们需要拼接的两张图的展示,可以看出其还具有一定的旋转变换,之后的图像转换必定包含旋转的操作;

二、单应性矩阵计算

主要分为以下几个步骤:

1、创建特征转换对象;

2、通过特征转换对象获得特征点和描述子;

3、创建特征匹配器;

4、进行特征匹配;

5、过滤特征,找出有效的特征匹配点;

6、单应性矩阵计算

实现代码:

def get_homo(img1, img2):
    # 1实现
    sift = cv2.xfeatures2d.SIFT_create()
    # 2实现
    k1, p1 = sift.detectAndCompute(img1, None)
    k2, p2 = sift.detectAndCompute(img2, None)
    # 3实现
    bf = cv2.BFMatcher()
    # 4实现
    matches = bf.knnMatch(p1, p2, k=2)
    # 5实现
    good = []
    for m1, m2 in matches:
        if m1.distance < 0.8 * m2.distance:
            good.append(m1)
    # 6实现
    if len(good) > 8:
        img1_pts = []
        img2_pts = []
        for m in good:
            img1_pts.append(k1[m.queryIdx].pt)
            img2_pts.append(k2[m.trainIdx].pt)
        img1_pts = np.float32(img1_pts).reshape(-1, 1, 2)
        img2_pts = np.float32(img2_pts).reshape(-1, 1, 2)
        H, mask = cv2.findHomography(img1_pts, img2_pts, cv2.RANSAC, 5.0)
        return H
    else:
        print('piints is not enough 8!')
        exit()

三、图像拼接

实现步骤:

1、获得图像的四个角点;

2、根据单应性矩阵变换图片;

3、创建一张大图,拼接图像;

4、输出结果

实现代码:

def stitch_img(img1, img2, H):
    # 1实现
    h1, w1 = img1.shape[:2]
    h2, w2 = img2.shape[:2]
    img1_point = np.float32([[0,0], [0,h1], [w1,h1], [w1,0]]).reshape(-1, 1, 2)
    img2_point = np.float32([[0,0], [0,h2], [w2,h2], [w2,0]]).reshape(-1, 1, 2)
    # 2实现
    img1_trans = cv2.perspectiveTransform(img1_point, H)
    # 将img1变换后的角点与img2原来的角点做拼接
    result_point = np.concatenate((img2_point, img1_trans), axis=0)
    # 获得拼接后图像x,y的最小值
    [x_min, y_min] = np.int32(result_point.min(axis=0).ravel()-0.5)
    # 获得拼接后图像x,y的最大值
    [x_max, y_max] = np.int32(result_point.max(axis=0).ravel()+0.5)
    # 平移距离
    trans_dist = [-x_min, -y_min]
    # 构建一个齐次平移矩阵
    trans_array = np.array([[1, 0, trans_dist[0]],
                            [0, 1, trans_dist[1]],
                            [0, 0, 1]])
    # 平移和单应性变换
    res_img = cv2.warpPerspective(img1, trans_array.dot(H), (x_max-x_min, y_max-y_min))
    # 3实现
    res_img[trans_dist[1]:trans_dist[1]+h2,
            trans_dist[0]:trans_dist[0]+w2] = img2
    return res_img

H = get_homo(img1, img2)
res_img = stitch_img(img1, img2, H)
# 4实现
cv2.imshow('result', res_img)
cv2.waitKey(0) 

最终结果图如上图所示,还有待优化点如下:

  • 边缘部分有色差,可以根据取平均值消除;
  • 黑色区域可进行裁剪并用对应颜色填充;

优化部分难度不大,有兴趣的可以实现一下;

总结

图像拼接作为一个实用性技术经常出现在我们的生活中,特别是全景拍摄以及图像内容拼接;当然,基于传统算法的图像拼接还是会有一些缺陷(速度和效果上),感兴趣的可以了解下基于深度学习的图像拼接算法,期待和大家沟通!

到此这篇关于OpenCV实战之图像拼接的示例代码的文章就介绍到这了,更多相关OpenCV图像拼接内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

OpenCV实战之图像拼接的示例代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

OpenCV实现图像拼接案例

这篇文章主要介绍了OpenCV实现图像拼接案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下
2022-11-13

opencv实践项目之图像拼接详细步骤

OpenCV的应用领域非常广泛,包括图像拼接、图像降噪、产品质检、人机交互、人脸识别、动作识别、动作跟踪、无人驾驶等,下面这篇文章主要给大家介绍了关于opencv实践项目之图像拼接的相关资料,需要的朋友可以参考下
2023-05-19

OpenCV+Qt实现图像处理操作工具的示例代码

这篇文章主要介绍了利用OpenCV+Qt实现图像处理操作工具,可以实现雪花屏、高斯模糊、中值滤波、毛玻璃等操作,感兴趣的可以了解一下
2022-11-13

JavaScript实现登录拼图验证的示例代码

这篇文章主要为大家详细介绍了如何利用JavaScript实现登录拼图验证的功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
2023-01-11

Python+OpenCV图像处理之直方图统计的示例分析

这篇文章主要为大家展示了“Python+OpenCV图像处理之直方图统计的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python+OpenCV图像处理之直方图统计的示例分析”这篇文章
2023-06-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录