我的编程空间,编程开发者的网络收藏夹
学习永远不晚

一小时学会TensorFlow2之自定义层

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

一小时学会TensorFlow2之自定义层

概述

通过自定义网络, 我们可以自己创建网络并和现有的网络串联起来, 从而实现各种各样的网络结构.

Sequential

Sequential 是 Keras 的一个网络容器. 可以帮助我们将多层网络封装在一起.

在这里插入图片描述

通过 Sequential 我们可以把现有的层已经我们自己的层实现结合, 一次前向传播就可以实现数据从第一层到最后一层的计算.

格式:


tf.keras.Sequential(
    layers=None, name=None
)

例子:


# 5层网络模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(256, activation=tf.nn.relu),
    tf.keras.layers.Dense(128, activation=tf.nn.relu),
    tf.keras.layers.Dense(64, activation=tf.nn.relu),
    tf.keras.layers.Dense(32, activation=tf.nn.relu),
    tf.keras.layers.Dense(10)
])

Model & Layer

通过 Model 和 Layer 的__init__call()我们可以自定义层和模型.

Model:


class My_Model(tf.keras.Model):  # 继承Model

    def __init__(self):
        """
        初始化
        """
        
        super(My_Model, self).__init__()
        self.fc1 = My_Dense(784, 256)  # 第一层
        self.fc2 = My_Dense(256, 128)  # 第二层
        self.fc3 = My_Dense(128, 64)  # 第三层
        self.fc4 = My_Dense(64, 32)  # 第四层
        self.fc5 = My_Dense(32, 10)  # 第五层

    def call(self, inputs, training=None):
        """
        在Model被调用的时候执行
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回输出
        """
        
        x = self.fc1(inputs)
        x = tf.nn.relu(x)
        x = self.fc2(x)
        x = tf.nn.relu(x)
        x = self.fc3(x)
        x = tf.nn.relu(x)
        x = self.fc4(x)
        x = tf.nn.relu(x)
        x = self.fc5(x)

        return x

Layer:


class My_Dense(tf.keras.layers.Layer):  # 继承Layer

    def __init__(self, input_dim, output_dim):
        """
        初始化
        :param input_dim:
        :param output_dim:
        """

        super(My_Dense, self).__init__()

        # 添加变量
        self.kernel = self.add_variable("w", [input_dim, output_dim])  # 权重
        self.bias = self.add_variable("b", [output_dim])  # 偏置

    def call(self, inputs, training=None):
        """
        在Layer被调用的时候执行, 计算结果
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回计算结果
        """

        # y = w * x + b
        out = inputs @ self.kernel + self.bias

        return out

案例

数据集介绍

CIFAR-10 是由 10 类不同的物品组成的 6 万张彩色图片的数据集. 其中 5 万张为训练集, 1 万张为测试集.

在这里插入图片描述

完整代码


import tensorflow as tf

def pre_process(x, y):

    # 转换x
    x = 2 * tf.cast(x, dtype=tf.float32) / 255 - 1  # 转换为-1~1的形式
    x = tf.reshape(x, [-1, 32 * 32 * 3])  # 把x铺平

    # 转换y
    y = tf.convert_to_tensor(y)  # 转换为0~1的形式
    y = tf.one_hot(y, depth=10)  # 转成one_hot编码

    # 返回x, y
    return x, y

def get_data():
    """
    获取数据
    :return:
    """

    # 获取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()

    # 调试输出维度
    print(X_train.shape)  # (50000, 32, 32, 3)
    print(y_train.shape)  # (50000, 1)

    # squeeze
    y_train = tf.squeeze(y_train)  # (50000, 1) => (50000,)
    y_test = tf.squeeze(y_test)  # (10000, 1) => (10000,)

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(10000, seed=0)
    train_db = train_db.batch(batch_size).map(pre_process).repeat(iteration_num)  # 迭代20次

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)
    test_db = test_db.batch(batch_size).map(pre_process)

    return train_db, test_db

class My_Dense(tf.keras.layers.Layer):  # 继承Layer

    def __init__(self, input_dim, output_dim):
        """
        初始化
        :param input_dim:
        :param output_dim:
        """

        super(My_Dense, self).__init__()

        # 添加变量
        self.kernel = self.add_weight("w", [input_dim, output_dim])  # 权重
        self.bias = self.add_weight("b", [output_dim])  # 偏置

    def call(self, inputs, training=None):
        """
        在Layer被调用的时候执行, 计算结果
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回计算结果
        """

        # y = w * x + b
        out = inputs @ self.kernel + self.bias

        return out


class My_Model(tf.keras.Model):  # 继承Model

    def __init__(self):
        """
        初始化
        """

        super(My_Model, self).__init__()
        self.fc1 = My_Dense(32 * 32 * 3, 256)  # 第一层
        self.fc2 = My_Dense(256, 128)  # 第二层
        self.fc3 = My_Dense(128, 64)  # 第三层
        self.fc4 = My_Dense(64, 32)  # 第四层
        self.fc5 = My_Dense(32, 10)  # 第五层

    def call(self, inputs, training=None):
        """
        在Model被调用的时候执行
        :param inputs: 输入
        :param training: 默认为None
        :return: 返回输出
        """

        x = self.fc1(inputs)
        x = tf.nn.relu(x)
        x = self.fc2(x)
        x = tf.nn.relu(x)
        x = self.fc3(x)
        x = tf.nn.relu(x)
        x = self.fc4(x)
        x = tf.nn.relu(x)
        x = self.fc5(x)

        return x

# 定义超参数
batch_size = 256  # 一次训练的样本数目
learning_rate = 0.001  # 学习率
iteration_num = 20  # 迭代次数
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)  # 优化器
loss = tf.losses.CategoricalCrossentropy(from_logits=True)  # 损失
network = My_Model()  # 实例化网络

# 调试输出summary
network.build(input_shape=[None, 32 * 32 * 3])
print(network.summary())

# 组合
network.compile(optimizer=optimizer,
                loss=loss,
                metrics=["accuracy"])

if __name__ == "__main__":
    # 获取分割的数据集
    train_db, test_db = get_data()

    # 拟合
    network.fit(train_db, epochs=5, validation_data=test_db, validation_freq=1)

输出结果:

Model: "my__model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
my__dense (My_Dense) multiple 786688
_________________________________________________________________
my__dense_1 (My_Dense) multiple 32896
_________________________________________________________________
my__dense_2 (My_Dense) multiple 8256
_________________________________________________________________
my__dense_3 (My_Dense) multiple 2080
_________________________________________________________________
my__dense_4 (My_Dense) multiple 330
=================================================================
Total params: 830,250
Trainable params: 830,250
Non-trainable params: 0
_________________________________________________________________
None
(50000, 32, 32, 3)
(50000, 1)
2021-06-15 14:35:26.600766: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
Epoch 1/5
3920/3920 [==============================] - 39s 10ms/step - loss: 0.9676 - accuracy: 0.6595 - val_loss: 1.8961 - val_accuracy: 0.5220
Epoch 2/5
3920/3920 [==============================] - 41s 10ms/step - loss: 0.3338 - accuracy: 0.8831 - val_loss: 3.3207 - val_accuracy: 0.5141
Epoch 3/5
3920/3920 [==============================] - 41s 10ms/step - loss: 0.1713 - accuracy: 0.9410 - val_loss: 4.2247 - val_accuracy: 0.5122
Epoch 4/5
3920/3920 [==============================] - 41s 10ms/step - loss: 0.1237 - accuracy: 0.9581 - val_loss: 4.9458 - val_accuracy: 0.5050
Epoch 5/5
3920/3920 [==============================] - 42s 11ms/step - loss: 0.1003 - accuracy: 0.9666 - val_loss: 5.2425 - val_accuracy: 0.5097

到此这篇关于一小时学会TensorFlow2之自定义层的文章就介绍到这了,更多相关TensorFlow2自定义层内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

一小时学会TensorFlow2之自定义层

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录