我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python如何解决高等数学问题

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python如何解决高等数学问题

这篇文章将为大家详细讲解有关Python如何解决高等数学问题,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

使用Python解决高等数学中极限、导数、偏导数、定积分、不定积分、双重积分等问题

Sympy是一个Python的科学计算库,它旨在成为功能齐全的计算机代数系统。 SymPy 包括从基本符号算术到微积分,代数,离散数学和量子物理学的功能。 它可以在 LaTeX 中显示结果。

Sympy官网

文章目录

  • Python解决高等数学问题,妈妈再也不用担心我的学习

  • 实用技巧

    • 1 符号函数

    • 2 展开表达式expand

    • 3 泰勒展开公式series

    • 4 符号展开

  • 求极限limit

  • 求导diff

    • 1 一元函数

    • 2 多元函数

  • 积分integrate

    • 1 定积分

    • 2 不定积分

    • 3 双重积分

  • 求解方程组solve

  • 计算求和式summation


Python如何解决高等数学问题

看到这图,是不是感觉快喘不过气了呢。Python来帮你解决。

from sympy import *import sympy

输入“x= symbols(“x”)”命令定义一个符号

x = Symbol("x")y = Symbol("y")

1. 实用技巧

1.1 符号函数

sympy提供了很多数学符号,总结如下

  • 虚数单位

sympy.I
  • 自然对数

sympy.E
  • 无穷大

sympy.oo
  • 圆周率

 sympy.pi
  • 求n次方根

 sympy.root(8,3)
  • 取对数

sympy.log(1024,2)
  • 求阶乘

sympy.factorial(4)
  • 三角函数

sympy.sin(sympy.pi)sympy.tan(sympy.pi/4)sympy.cos(sympy.pi/2)

1.2 展开表达式expand

f = (1+x)**3expand(f)

                                         x                          3                                 +                         3                                  x                          2                                 +                         3                         x                         +                         1                                 \displaystyle x^{3} + 3 x^{2} + 3 x + 1           x3+3x2+3x+1

1.3 泰勒展开公式series

ln(1+x).series(x,0,4)

                                x                         −                                             x                               2                                    2                                 +                                             x                               3                                    3                                 +                         O                                  (                                     x                               4                                    )                                         \displaystyle x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + O\left(x^{4}\right)           x−2x2+3x3+O(x4)

sin(x).series(x,0,8)

                                x                         −                                             x                               3                                    6                                 +                                             x                               5                                    120                                 −                                             x                               7                                    5040                                 +                         O                                  (                                     x                               8                                    )                                         \displaystyle x - \frac{x^{3}}{6} + \frac{x^{5}}{120} - \frac{x^{7}}{5040} + O\left(x^{8}\right)           x−6x3+120x5−5040x7+O(x8)

cos(x).series(x,0,9)

                                1                         −                                             x                               2                                    2                                 +                                             x                               4                                    24                                 −                                             x                               6                                    720                                 +                                             x                               8                                    40320                                 +                         O                                  (                                     x                               9                                    )                                         \displaystyle 1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} - \frac{x^{6}}{720} + \frac{x^{8}}{40320} + O\left(x^{9}\right)           1−2x2+24x4−720x6+40320x8+O(x9)

(1/(1+x)).series(x,0,5)

                                1                         −                         x                         +                                  x                          2                                 −                                  x                          3                                 +                                  x                          4                                 +                         O                                  (                                     x                               5                                    )                                         \displaystyle 1 - x + x^{2} - x^{3} + x^{4} + O\left(x^{5}\right)           1−x+x2−x3+x4+O(x5)

tan(x).series(x,0,4)

                                x                         +                                             x                               3                                    3                                 +                         O                                  (                                     x                               4                                    )                                         \displaystyle x + \frac{x^{3}}{3} + O\left(x^{4}\right)           x+3x3+O(x4)

(1/(1-x)).series(x,0,4)

                                1                         +                         x                         +                                  x                          2                                 +                                  x                          3                                 +                         O                                  (                                     x                               4                                    )                                         \displaystyle 1 + x + x^{2} + x^{3} + O\left(x^{4}\right)           1+x+x2+x3+O(x4)

(1/(1+x)).series(x,0,4)

                                1                         −                         x                         +                                  x                          2                                 −                                  x                          3                                 +                         O                                  (                                     x                               4                                    )                                         \displaystyle 1 - x + x^{2} - x^{3} + O\left(x^{4}\right)           1−x+x2−x3+O(x4)

1.4 符号展开

a = Symbol("a")b = Symbol("b")#simplify( )普通的化简simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))#trigsimp( )三角化简trigsimp(sin(x)/cos(x))#powsimp( )指数化简powsimp(x**a*x**b)

                                         x                                     a                               +                               b                                                   \displaystyle x^{a + b}           xa+b

2. 求极限limit

limit(sin(x)/x,x,0)

                                1                                 \displaystyle 1           1

f2=(1+x)**(1/x)
f2

                                                    (                               x                               +                               1                               )                                               1                               x                                                   \displaystyle \left(x + 1\right)^{\frac{1}{x}}           (x+1)x1

重要极限

f1=sin(x)/xf2=(1+x)**(1/x)f3=(1+1/x)**xlim1=limit(f1,x,0)lim2=limit(f2,x,0)lim3=limit(f3,x,oo)print(lim1,lim2,lim3)
1 E E

dir可以表示极限的趋近方向

f4 = (1+exp(1/x))f4

                                         e                                     1                               x                                           +                         1                                 \displaystyle e^{\frac{1}{x}} + 1           ex1+1

lim4 = limit(f4,x,0,dir="-")lim4

                                1                                 \displaystyle 1           1

lim5 = limit(f4,x,0,dir="+")lim5

                                ∞                                 \displaystyle \infty           ∞

3. 求导diff

diff(函数,自变量,求导次数)

3.1 一元函数

求导问题

diff(sin(2*x),x)

                                2                         cos                         ⁡                                  (                          2                          x                          )                                         \displaystyle 2 \cos{\left(2 x \right)}           2cos(2x)

diff(ln(x),x)

                                         1                          x                                         \displaystyle \frac{1}{x}           x1

3.2 多元函数

求偏导问题

diff(sin(x*y),x,y)

                                −                         x                         y                         sin                         ⁡                                  (                          x                          y                          )                                 +                         cos                         ⁡                                  (                          x                          y                          )                                         \displaystyle - x y \sin{\left(x y \right)} + \cos{\left(x y \right)}           −xysin(xy)+cos(xy)

4. 积分integrate

4.1 定积分

  • 函数的定积分: integrate(函数,(变量,下限,上限))

  • 函数的不定积分: integrate(函数,变量)

f = x**2 + 1integrate(f,(x,-1.1))

                                −                         1.54366666666667                                 \displaystyle -1.54366666666667           −1.54366666666667

integrate(exp(x),(x,-oo,0))

                                1                                 \displaystyle 1           1

4.2 不定积分

f = 1/(1+x*x)integrate(f,x)

                                atan                         ⁡                                  (                          x                          )                                         \displaystyle \operatorname{atan}{\left(x \right)}           atan(x)

4.3 双重积分

f = (4/3)*x + 2*yintegrate(f,(x,0,1),(y,-3,4))

                                11.6666666666667                                 \displaystyle 11.6666666666667           11.6666666666667

5. 求解方程组solve

#解方程组#定义变量f1=x+y-3f2=x-y+5solve([f1,f2],[x,y])

{x: -1, y: 4}

6. 计算求和式summation

计算求和式可以使用sympy.summation函数,其函数原型为sympy.summation(f, *symbols, **kwargs)

Python如何解决高等数学问题
**

sympy.summation(2 * n,(n,1,100))

10100

关于“Python如何解决高等数学问题”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python如何解决高等数学问题

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python如何解决高等数学问题

这篇文章将为大家详细讲解有关Python如何解决高等数学问题,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。使用Python解决高等数学中极限、导数、偏导数、定积分、不定积分、双重积分等问题Sympy是一个
2023-06-14

MySQL 数据库如何解决高并发问题

前言我们都知道初创公司一开始都是以单体应用为首要架构,一般都是单体单库的形式。但是版本以及版本的迭代,数据库需要承受更多的高并发已经成了 架构设计 需要考虑的点。 那么解决问题,就得说到方案。但是方案有很多,我们该怎么选择呢? 优化与方案
2022-05-20

PHP高并发问题如何解决

PHP高并发问题如何解决?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。重启与过载保护如果系统发生“雪崩”,贸然重启服务,是无法解决问题的。最常见的现象是,启动起
2023-06-15

Java如何解决高并发问题

在Java中,可以采用以下几种方式来解决高并发问题:1. 使用线程池:线程池可以有效地管理线程的创建和销毁,避免频繁地创建和销毁线程,从而提高系统的并发能力。2. 使用并发集合类:Java提供了一系列的并发集合类,如ConcurrentHa
2023-10-20

如何解决PHP高并发问题

这篇“如何解决PHP高并发问题”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“如何解决PHP高并发问题”文章吧。秒杀会产生一个
2023-06-29

java如何解决poi导入纯数字等格式问题

小编给大家分享一下java如何解决poi导入纯数字等格式问题,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!poi导入纯数字等问题用poi导出excel时候,如果单
2023-06-29

python浮点数运算问题如何解决

在使用Python进行浮点数运算时,可能会遇到一些精度问题。这是因为计算机使用二进制来表示浮点数,而二进制无法精确地表示某些十进制小数。以下是一些解决浮点数运算问题的方法:使用Decimal库:Decimal库提供了高精度的十进制运算。可
2023-10-21

如何解决css高度塌陷问题

这篇文章将为大家详细讲解有关如何解决css高度塌陷问题,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1. 高度塌陷在文档流中,父元素的高度默认被子元素撑开,也就是说子元素多高,父元素就多高。但是, 当为子
2023-06-08

如何解决CPU占用过高问题

这篇文章主要介绍如何解决CPU占用过高问题,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!电脑CPU占用过高的原因:原因一、软件方面导致CPU占用过高软件方面主要在于系统问题,如系统过于臃肿,开启了非常多的应用程序或电
2023-06-28

如何解决不能用Python执行机器学习问题

这篇文章主要介绍“如何解决不能用Python执行机器学习问题”,在日常操作中,相信很多人在如何解决不能用Python执行机器学习问题问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”如何解决不能用Python执行
2023-06-16

python打印数据不全问题如何解决

在Python中,如果要打印大量的数据,可能会导致打印不全的问题。可以通过以下方法来解决这个问题:1. 使用循环逐行打印数据:将数据拆分成多个部分,并使用循环逐个打印每个部分,可以确保打印出完整的数据。```pythondata = [..
2023-09-20

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录