我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Android设计模式之单例模式实例

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Android设计模式之单例模式实例

一、概念

单例模式是运用最广泛的设计模式之一,在应用这个模式时,单例模式的类必须保证只有一个实例存在。多用于整个程序只需要有一个实例,通常很消耗资源的类,比如线程池,缓存,网络请求,IO操作,访问数据库等。由于类比较耗资源,所以没必要让它构造多个实例,这种就是单例模式比较好的使用场景。

1.1 单例类

单例模式(Singleton Pattern):一个类有且仅有一个实例,并且自行实例化向整个系统提供,也称为单例类。

单例模式有三个要点:

1.某个类只能有一个实例。

2.必须自行创建这个实例。

3.必须给所有其他对象提供这一实例。

具体实现角度来说就是以下几点:

1.单例模式的类只提供私有的构造函数。

2.通过一个静态方法或者枚举返回单例类对象。

3.确保单例类有且只有一个静态私有对象,尤其是在多线程环境下。

4.提供了一个静态的公有的函数用于创建或获取它本身的静态私有对象。

5.确保单例类对象在反序列化时不会重新构建对象。

在单例类的内部实现只生成一个实例,同时它提供一个静态的getInstance()工厂方法,让客户可以访问它的唯一实例;为了防止在外部对其实例化,将其构造函数设计为私有;在单例类内部定义了一个Singleton类型的静态对象,作为外部共享的唯一实例。

1.2 优缺点

1.2.1 优点

1.单例模式提供了对唯一实例的受控访问。因为单例类封装了它的唯一实例,所以它可以严格控制客户怎样以及何时访问它。

2.由于在系统内存中只存在一个对象,因此可以节约系统资源,对于一些需要频繁创建和销毁的对象单例模式无疑可以提高系统的性能。

3.允许可变数目的实例。基于单例模式我们可以进行扩展,使用与单例控制相似的方法来获得指定个数的对象实例,既节省系统资源,又解决了单例单例对象共享过多有损性能的问题。

1.2.2 缺点

1.由于单例模式中没有抽象层,因此单例类的扩展有很大的困难。

2.单例类的职责过重,在一定程度上违背了“单一职责原则”。因为单例类既充当了工厂角色,提供了工厂方法,同时又充当了产品角色,包含一些业务方法,将产品的创建和产品的本身的功能融合到一起。

3.现在很多面向对象语言(如Java、C#)的运行环境都提供了自动垃圾回收的技术,因此,如果实例化的共享对象长时间不被利用,系统会认为它是垃圾,会自动销毁并回收资源,下次利用时又将重新实例化,这将导致共享的单例对象状态的丢失。

二、创建单例模式的方法

2.1 饿汉式

强调饿,那么在创建对象实例的时候就比较着急,饿了嘛,于是在装载类的时候就创建对象实例。

这种方法非常简单,因为单例的实例被声明成 static 和 final 变量,在第一次加载类到内存中时就会初始化,所以创建实例本身是线程安全的。

public class SingletonHungry {
    //类加载时就初始化
    private static final SingletonHungry singleton = new SingletonHungry();
    private SingletonHungry(){}
    public static SingletonHungry getInstance(){
        return singleton;
    }
}

缺点是它不是一种懒加载模式,即使客户端没有调用 getInstance()方法,单例会在加载类后一开始就被初始化。

饿汉式的创建方式在一些场景中将无法使用:如 Singleton 实例的创建是依赖参数或者配置文件的,在 getInstance() 之前必须调用某个方法设置参数给它,那样这种单例写法就无法使用了。

2.2 懒汉式

强调懒,那么在创建对象实例的时候就不着急,什么时候用什么时候创建。所以在装载对象的时候不创建对象实例。

2.2.1 懒汉式(非线程安全)

public class SingletonLazy {
    private static SingletonLazy singletonLazy;
    private SingletonLazy(){}
    public static SingletonLazy getInstance(){
        if (singletonLazy == null) {
            singletonLazy = new SingletonLazy();
        }
        return singletonLazy;
    }
}

这段代使用了懒加载模式,但是却存在致命的问题。当有多个线程并行调用 getInstance() 的时候,就会创建多个实例。也就是说在多线程下不能正常工作。那么怎么解决?最简单的方法是给 getInstance() 方法加个同步锁(synchronized)。

2.2.2 懒汉式(线程安全)

public class SingletonLazy {
    private static SingletonLazy singletonLazy;
    private SingletonLazy(){}
    public static synchronized SingletonLazy getInstance(){
        if (singletonLazy == null) {
            singletonLazy = new SingletonLazy();
        }
        return singletonLazy;
    }
}

上面通过添加 synchronized 关键字,使得getInstance()是一个同步方法,保证多线程情况下单例对象的唯一性。

虽然做到了线程安全,并且解决了多实例的问题,但是它并不高效。因为在任何时候只能有一个线程调用 getInstance() 方法。但是同步操作只需要在第一次调用时才被需要,即第一次创建单例实例对象时。这就引出了双重检验锁。

2.3 双重检验锁

双重检验锁模式(double checked locking pattern),是一种使用同步块加锁的方法。程序员称其为双重检查锁,也是网上使用毕竟频繁的一种方式。

为什么叫双重检查锁?因为会有两次检查 instance == null,一次是在同步块外,一次是在同步块内。为什么在同步块内还要再检验一次?因为可能会有多个线程一起进入同步块外的 if,避免不必要的同步。如果在同步块内不进行二次检验的话就会生成多个实例,避免生成多个实例。

public class SingletonDCL {
    private static SingletonDCL singleton;
    private SingletonDCL(){}
    public static SingletonDCL getInstance(){
        if (singleton == null) {
            synchronized (SingletonDCL.class){
                if (singleton == null) {
                    singleton = new SingletonDCL();
                }
            }
        }
        return singleton;
    }
}

这段代码看起来很完美有着双重检查,但很可惜,它是有问题。主要在于 singleton = new SingletonDCL()。事实上在 JVM 中这句话大概做了下面 3 件事情:

1.给 singleton 分配内存。

2.调用 SingletonDCL 的构造函数来初始化成员变量。

3.将singleton对象指向分配的内存空间(执行完这步 singleton 就为非 null)。

但是在 JVM 的即时编译器中存在指令重排序的优化。也就是说上面的第2步和第3步的顺序是不能保证的,最终的执行顺序可能是 1-2-3 也可能是 1-3-2。如果是后者,则在 3 执行完毕、但 2 未执行之前,被线程二抢占了,这时 singleton 已经是非 null 了(但却没有初始化),所以线程二会直接返回 singleton(第2步未执行),然后使用,然后顺理成章地报错。

我们只需要将 singleton 变量声明成 volatile 就可以了。

public class SingletonDCL {
    private volatile static SingletonDCL singleton;//变量声明成volatile
    private SingletonDCL(){}
    public static SingletonDCL getInstance(){
        if (singleton == null) {
            synchronized (SingletonDCL.class){
                if (singleton == null) {
                    singleton = new SingletonDCL();
                }
            }
        }
        return singleton;
    }
}

使用 volatile 的主要原因是其有一个特性:禁止指令重排序优化。也就是说,在 volatile 变量的赋值操作后面会有一个内存屏障(生成的汇编代码上),读操作不会被重排序到内存屏障之前。比如上面的例子,取操作必须在执行完 1-2-3 之后或者 1-3-2 之后,不存在执行到 1-3 然后取到值的情况。

当然 volatile 变量还有一个规则:对一个变量的写操作先行发生于后面对这个变量的读操作(这里的"后面"是时间上的先后顺序)。

2.4 静态内部类

public class SingletonNested {
    //静态内部类
    private static class SingletonHolder{
        private static final SingletonNested singleton = new SingletonNested();
    }
    private SingletonNested(){}
    public static SingletonNested getInstance(){
        return SingletonHolder.singleton;
    }
}

使用JVM本身机制保证了线程安全问题。由于静态单例对象没有作为Singleton的成员变量直接实例化,因此类加载时不会实例化SingletonNested,第一次调用getInstance()时将加载内部类SingletonHolder,在该内部类中定义了一个static类型的变量singleton,此时会首先初始化这个成员变量,由Java虚拟机来保证其线程安全性,确保该成员变量只能初始化一次。由于getInstance()方法没有任何线程锁定,因此其性能不会造成任何影响。 s

由于 SingletonHolder 是私有的,除了 getInstance() 之外没有办法访问它,因此它是懒汉式的,同时读取实例的时候不会进行同步,没有性能缺陷,也不依赖 JDK 版本。

2.5 枚举

public enum SingletonEnum {
    SINGLETON;
    public void doSomeThing() {
    }
}

我们可以通过SingletonEnum.SINGLETON来访问实例,这比调用getInstance()方法简单多了。创建枚举默认就是线程安全的,所以不需要担心double checked locking,而且还能防止反序列化导致重新创建新的对象。

小结

单例模式不管用那种方式实现,核心思想都相同:

1.构造函数私有化,通过一次静态方法获取一个唯一实例

2.线程安全

使用场景:

1.需要频繁的进行创建和销毁的对象。

2.创建对象时耗时过多或耗费资源过多,但又经常用到的对象。

3.工具类对象。

4.频繁访问数据库或文件的对象。

一般情况下直接使用饿汉式就好了,当然推荐使用文中DCL方式和静态内部类的方式来创建单例模式。如果涉及到反序列化创建对象时会试着使用枚举的方式来实现单例。当然,枚举单例的优点就是简单,但是大部分应用开发很少用枚举,可读性并不是很高,不建议用。

三、扩展

3.1 防止反序列化

上文使用枚举可以防止反序列化导致重新创建新的对象。那么其他几种实现单例模式的方式怎么方式防止反序列化导致重新创建新的对象?那就是反序列化。可以参考序列化一文。

反序列化操作提供了一个很特别的钩子函数,类中具有一个私有的readResolve()函数,这个函数可以让开发人员控制对象的反序列化。

public class SingletonDCL implements Serializable {
    private volatile static SingletonDCL singleton;//变量声明成volatile
    ...
    private Object readResolve() throws ObjectStreamException {
        return singleton;
    }
}

在readResolve方法中将单例对象返回,而不是重新生成一个新对象。

3.2 volatile 关键字

Java内存模型规定了所有的变量都存储在主内存中。每条线程中还有自己的工作内存,线程的工作内存中保存了被该线程所使用到的变量(这些变量是从主内存中拷贝而来)。线程对变量的所有操作(读取,赋值)都必须在工作内存中进行。不同线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成。

作用

1.线程可见性

当一个共享变量被volatile修饰时,它会保证修改的值会立即被更新到主存,当有其他线程需要读取时,它会去内存中读取新值。

2.指令重排序

没加之前,指令是并发执行的,第一个线程执行到一半另一个线程可能开始执行了。加了volatile关键字后,不同线程是按照顺序一步一步执行的。例如上面2.3 双重检验锁。

到此这篇关于Android设计模式之单例模式实例的文章就介绍到这了,更多相关Android单例模式内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Android设计模式之单例模式实例

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Android设计模式之单例模式实例

这篇文章主要介绍了Android设计模式之单例模式实例,单例模式是运用最广泛的设计模式之一,在应用这个模式时,单例模式的类必须保证只有一个实例存在
2023-05-16

Android设计模式之单例模式

1、单例模式常见情景设计模式中,简单不过的是单例模式。先看看单例模式Singleton模式可以是很简单的,它的全部只需要一个类可以完成(看看这章可怜的UML图)。但是如果在“对象创建的次数以及何时被创建”这两点上较真
2022-06-06

Android设计模式之单例模式解析

在日常开发过程中时常需要用到设计模式,但是设计模式有23种,如何将这些设计模式了然于胸并且能在实际开发过程中应用得得心应手呢?和我一起跟着《Android源码设计模式解析与实战》一书边学边应用吧!今天我们要讲的是单例模式定义确保某一个类只有
2023-05-30

Android设计模式之单例模式详解

单例模式一个类只有一个实例,并且可以全局访问使用应用场景如账户管理类,数据库操作类等(某个对象频繁被访问使用)常用方式饿汉式懒汉式同步加锁DCL双重加锁验证静态内部类枚举单例饿汉式加载类的同时立即进行初始化操作,对资源消耗很大public
2023-05-30

Android设计模式系列之单例模式

单例模式,可以说是GOF的23种设计模式中最简单的一个。 这个模式相对于其他几个模式比较独立,它只负责控制自己的实例化数量单一(而不是考虑为用户产生什么样的实例),很有意思,是一个感觉上很干净的模式,本人很喜欢这个模式。 android中
2022-06-06

python设计模式之单例模式

单例模式是一种创建型设计模式,它确保一个类有且只有一个特定类型的对象,并提供全局访问点。其意图为:确保类有且只有一个对象被创建为对象提供一个访问点,使程序可以全局访问该对象控制共享资源的并行访问简单理解:单例即为单个实例,也就是每次实例化创
2023-01-30

JavaScript设计模式之单例模式

单例模式的定义是:保证一个类仅有一个实例,并提供一个访问它的全局访问点。文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2022-11-13

Android设计模式之单例模式怎么创建

本篇内容介绍了“Android设计模式之单例模式怎么创建”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、概念单例模式是运用最广泛的设计模式
2023-07-06

android开发设计模式之——单例模式详解

单例模式是设计模式中最常见也最简单的一种设计模式,保证了在程序中只有一个实例存在并且能全局的访问到。比如在Android实际APP 开发中用到的 账号信息对象管理, 数据库对象(SQLiteOpenHelper)等都会用到单例模式。下面针对
2022-06-06

设计模式 | 单例设计模式

单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。

java设计模式之怎么实现单例模式

这篇文章主要介绍了java设计模式之怎么实现单例模式的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇java设计模式之怎么实现单例模式文章都会有所收获,下面我们一起来看看吧。单元素的枚举类型经常成为实现 Sing
2023-07-04

java设计模式之单例模式解析

单例模式是最简单但同时也是很重要的一种设计模式,优点有以下几个方面:1.当内存占用特别大的类需要频繁地创建销毁时,单例模式可以节省内存和提高性能,例如myBatis里面的sessionFactory2.当需要对文件做单一读写时,例如同一时间
2023-05-31

Golang 常见设计模式之单例模式

本文主要介绍Go语言中实现单例模式的几种常用套路,经过对比可以得出结论,最推荐的方式是使用 once.Do 来实现,sync.Once 包帮我们隐藏了部分细节,却可以让代码可读性得到很大提升。

编程热搜

  • Android:VolumeShaper
    VolumeShaper(支持版本改一下,minsdkversion:26,android8.0(api26)进一步学习对声音的编辑,可以让音频的声音有变化的播放 VolumeShaper.Configuration的三个参数 durati
    Android:VolumeShaper
  • Android崩溃异常捕获方法
    开发中最让人头疼的是应用突然爆炸,然后跳回到桌面。而且我们常常不知道这种状况会何时出现,在应用调试阶段还好,还可以通过调试工具的日志查看错误出现在哪里。但平时使用的时候给你闹崩溃,那你就欲哭无泪了。 那么今天主要讲一下如何去捕捉系统出现的U
    Android崩溃异常捕获方法
  • android开发教程之获取power_profile.xml文件的方法(android运行时能耗值)
    系统的设置–>电池–>使用情况中,统计的能耗的使用情况也是以power_profile.xml的value作为基础参数的1、我的手机中power_profile.xml的内容: HTC t328w代码如下:
    android开发教程之获取power_profile.xml文件的方法(android运行时能耗值)
  • Android SQLite数据库基本操作方法
    程序的最主要的功能在于对数据进行操作,通过对数据进行操作来实现某个功能。而数据库就是很重要的一个方面的,Android中内置了小巧轻便,功能却很强的一个数据库–SQLite数据库。那么就来看一下在Android程序中怎么去操作SQLite数
    Android SQLite数据库基本操作方法
  • ubuntu21.04怎么创建桌面快捷图标?ubuntu软件放到桌面的技巧
    工作的时候为了方便直接打开编辑文件,一些常用的软件或者文件我们会放在桌面,但是在ubuntu20.04下直接直接拖拽文件到桌面根本没有效果,在进入桌面后发现软件列表中的软件只能收藏到面板,无法复制到桌面使用,不知道为什么会这样,似乎并不是很
    ubuntu21.04怎么创建桌面快捷图标?ubuntu软件放到桌面的技巧
  • android获取当前手机号示例程序
    代码如下: public String getLocalNumber() { TelephonyManager tManager =
    android获取当前手机号示例程序
  • Android音视频开发(三)TextureView
    简介 TextureView与SurfaceView类似,可用于显示视频或OpenGL场景。 与SurfaceView的区别 SurfaceView不能使用变换和缩放等操作,不能叠加(Overlay)两个SurfaceView。 Textu
    Android音视频开发(三)TextureView
  • android获取屏幕高度和宽度的实现方法
    本文实例讲述了android获取屏幕高度和宽度的实现方法。分享给大家供大家参考。具体分析如下: 我们需要获取Android手机或Pad的屏幕的物理尺寸,以便于界面的设计或是其他功能的实现。下面就介绍讲一讲如何获取屏幕的物理尺寸 下面的代码即
    android获取屏幕高度和宽度的实现方法
  • Android自定义popupwindow实例代码
    先来看看效果图:一、布局
  • Android第一次实验
    一、实验原理 1.1实验目标 编程实现用户名与密码的存储与调用。 1.2实验要求 设计用户登录界面、登录成功界面、用户注册界面,用户注册时,将其用户名、密码保存到SharedPreference中,登录时输入用户名、密码,读取SharedP
    Android第一次实验

目录