我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++ 动态规划算法使用分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++ 动态规划算法使用分析

Fibonacci

题目描述:

大家都知道斐波那契数列,现在要求输入一个正整数 n ,请你输出斐波那契数列的第 n 项。

解题思路:

1.递归

2.动态规划

状态:F(n)

状态递推:F(n)=F(n-1)+F(n-2)

初始值:F(1)=F(2)=1

返回结果:F(N)

代码实现:

法一:递归(效率低):


class Solution{public: int Fibonacci(int n)
{        // 初始值 
	if (n <= 0)
	{ 
		return 0; 
	} 
	if (n == 1 || n == 2) 
	{
		return 1; 
	}        
	// F(n)=F(n-1)+F(n-2) 
	return Fibonacci(n - 2) + Fibonacci(n - 1); }};

法二:动态规划


class Solution {
public:
    int Fibonacci(int n) {
        if(n==1 || n==2)
            return 1;
        int fn;
        int fn1 = 1, fn2 = 1;
        for(int i = 2; i < n; i++)
        {
            fn = fn1 + fn2;
            fn1 = fn2;
            fn2 = fn;
        }
        
        return fn;
        
        if(n==1 || n==2)
            return 1;
        int* F = new int[n];
        //初始状态
        F[0] = 1;
        F[1] = 1;
        for(int i = 2; i < n; i++)
        {
            F[i] = F[i-1] + F[i-2];
        }
        
        return F[n-1];
    }
};

字符串分割(Word Break)

题目描述:

给定一个字符串s和一组单词dict,判断s是否可以用空格分割成一个单词序列,使得单词序列中所有的单词都是dict中的单词(序列可以包含一个或多个单词)。

例如:

给定s=“nowcode”;

dict=[“now”, “code”].

返回true,因为"nowcode"可以被分割成"now code".

解题思路:

状态:

  • 子状态:前1,2,3,…,n个字符能否根据词典中的词被成功分词
  • F(i): 前i个字符能否根据词典中的词被成功分词

状态递推:

  • F(i): true{j <i && F(j) && substr[j+1,i]能在词典中找到} OR false 在j小于i中,只要能找到一个F(j)为true,并且从j+1到i之间的字符能在词典 中找到,则F(i)为true

初始值:

  • 对于初始值无法确定的,可以引入一个不代表实际意义的空状态,作为状态的起始 空状态的值需要保证状态递推可以正确且顺利的进行,到底取什么值可以通过简单的例子进行验证 F(0) = true

返回结果:F(n)

代码实现:


class Solution {
public:
    bool wordBreak(string s, unordered_set<string> &dict) {
        int len = s.size();
        vector<bool> F(len+1, false);
        F[0] = true;
        for(int i = 1; i <= len; i++)
        {
            //F[8]的状态:7<8 && F[7] && [8,8]
            //F[8]的状态:6<8 && F[6] && [7,8] 
            for(int j = i-1; j >= 0; j--)
            {
                if(F[j] && dict.find(s.substr(j,i-j)) != dict.end())
                {
                    F[i] = true;
                    break;
                }
            }
        }
        
        return F[len];
    }
};

三角矩阵(Triangle)

题目描述:

给出一个三角形,计算从三角形顶部到底部的最小路径和,每一步都可以移动到下面一行相邻的数字

例如,给出的三角形如下:

[[20],[30,40],[60,50,70],[40,10,80,30]]

解题思路:

状态:子状态:从(0,0)到(1,0),(1,1),(2,0),…(n,n)的最短路径和 F(i,j): 从(0,0)到(i,j)的最短路径和

状态递推: F(i,j) = min( F(i-1, j-1), F(i-1, j)) + triangle[i][j]

初始值: F(0,0) = triangle[0][0]返回结果: min(F(n-1, i))

代码实现:


class Solution {
public:
    int minimumTotal(vector<vector<int> > &triangle) {
        if(triangle.empty())
            return 0;
        int row = triangle.size();
        vector<vector<int> > minSum(triangle);
        for(int i = 1; i < row; i++)
        {
            for(int j = 0; j <= i; j++)
            {
                if(j == 0)
                    minSum[i][j] = minSum[i-1][j] + triangle[i][j];
                else if(j == i)
                    minSum[i][j] = minSum[i-1][j-1] + triangle[i][j];
                else
                    minSum[i][j] = min(minSum[i-1][j], minSum[i-1][j-1])
                                   + triangle[i][j];
            }
        }
        int result = minSum[row-1][0];
        for(int i = 1; i < triangle.size(); i++)
        {
            result = min(result, minSum[row-1][i]);
        }
        
        return result;
    }
};

路径总数(Unique Paths)

题目描述:

一个机器人在m×n大小的地图的左上角(起点)。 机器人每次可以向下或向右移动。机器人要到达地图的右下角(终点)。 可以有多少种不同的路径从起点走到终点?

解题思路:

状态:子状态:从(0,0)到达(1,0),(1,1),(2,1),…(m-1,n-1)的路径数 F(i,j): 从(0,0)到达F(i,j)的路径数

状态递推: F(i,j) = F(i-1,j) + F(i,j-1)

初始化: 特殊情况:第0行和第0列 F(0,i) = 1 F(i,0) = 1

返回结果: F(m-1,n-1)

代码实现:


class Solution {
public:
    
    int uniquePaths(int m, int n) {
        // write code here
        vector<vector<int> > ret(m, vector<int>(n,1));
        for(int i = 1; i < m; i++)
        {
            for(int j = 1; j < n; j++)
            {
                ret[i][j] = ret[i-1][j] + ret[i][j-1];
            }
        }
        
        return ret[m-1][n-1];
    }
};

最小路径和(Minimum Path Sum)

题目描述:

给定一个由非负整数填充的m x n的二维数组,现在要从二维数组的左上角走到右下角,请找出路径上的所有数字之和最小的路径。 注意:你每次只能向下或向右移动。

解题思路:

状态:子状态:从(0,0)到达(1,0),(1,1),(2,1),…(m-1,n-1)的最短路径 F(i,j): 从(0,0)到达F(i,j)的最短路径。

状态递推: F(i,j) = min{F(i-1,j) , F(i,j-1)} + (i,j)

初始化: F(0,0) = (0,0) 特殊情况:第0行和第0列 F(0,i) = F(0,i-1) + (0,i) F(i,0) = F(i-1,0) + (i,0)

返回结果: F(m-1,n-1)

代码实现:


class Solution {
public:
    
    int minPathSum(vector<vector<int> >& grid) {
        // write code here
        if(grid.size() == 0 || grid[0].size() == 0)
            return 0;
        int M = grid.size();
        int N = grid[0].size();
        vector<vector<int> > ret(M, vector<int>(N,0));
        ret[0][0] = grid[0][0];
        for(int i = 1; i < N; i++)
        {
            ret[0][i] = ret[0][i-1] + grid[0][i];
        }
        for(int i = 1; i < M; i++)
        {
            ret[i][0] = ret[i-1][0] + grid[i][0];
        }
        for(int i = 1; i < M; i++)
        {
            for(int j = 1; j < N; j++)
            {
                ret[i][j] = min(ret[i-1][j],ret[i][j-1]) + grid[i][j];
            }
        }
        
        return ret[M-1][N-1];
    }
};

到此这篇关于C++ 动态规划算法使用分析的文章就介绍到这了,更多相关C++ 动态规划内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++ 动态规划算法使用分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++动态规划算法如何使用

这篇“C++动态规划算法如何使用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“C++动态规划算法如何使用”文章吧。Fibon
2023-06-29

c语言动态规划算法是什么

C语言动态规划算法是一种用于解决优化问题的算法。它通过将问题划分为子问题,并保存子问题的解来避免重复计算,从而提高算法的效率。动态规划算法通常使用一个数组来保存子问题的解,这个数组称为“动态规划表”。算法的核心思想是通过填充动态规划表来逐步
2023-08-18

python动态规划算法怎么用

小编给大家分享一下python动态规划算法怎么用,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!python有哪些常用库python常用的库:1.requesuts;2.scrapy;3.pillow;4.twisted;5
2023-06-14

怎么使用C++动态规划算法实现矩阵链乘法

这篇文章主要介绍“怎么使用C++动态规划算法实现矩阵链乘法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么使用C++动态规划算法实现矩阵链乘法”文章能帮助大家解决问题。问题描述:给定n个矩阵的链<
2023-07-02

Java矩阵连乘问题(动态规划)算法实例分析

本文实例讲述了Java矩阵连乘问题(动态规划)算法。分享给大家供大家参考,具体如下:问题描述:给定n个矩阵:A1,A2,...,An,其中Ai与Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连
2023-05-30

怎么使用C++动态规划计算最大子数组

本文小编为大家详细介绍“怎么使用C++动态规划计算最大子数组”,内容详细,步骤清晰,细节处理妥当,希望这篇“怎么使用C++动态规划计算最大子数组”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。例题题目:输入一个整形
2023-07-02

C++ 递归函数在动态规划算法中的应用?

动态规划算法中使用递归函数可以有效解决最优化问题。示例是斐波那契数列求解,递归函数基于公式 f(n) = f(n-1) + f(n-2)。可以通过使用备忘录技术优化递归函数,将子问题解决方案存储起来,避免重复计算。备忘录技术示例 is 创建
C++ 递归函数在动态规划算法中的应用?
2024-04-24

java动态规划方法怎么使用

这篇文章主要介绍了java动态规划方法怎么使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇java动态规划方法怎么使用文章都会有所收获,下面我们一起来看看吧。说明1、动态规划是一种编程原理,可以通过将非常复杂
2023-06-30

基本算法思想:递归+分治+动态规划+贪

作者:心叶时间:2018-05-01 19:28本文对应github地址:https://github.com/yelloxing/...以上实现了常见算法的java、c语言、javascrpt(或node.js)、python3和go语言
2023-01-31

C++中的动态规划子序列问题分析探讨

可能有些读者有接触过动态规划,可能也有一些读者以前完全不知道动态规划这个东西,别担心,我这篇文章会为读者做一个入门,好让读者掌握这个重要的知识点
2023-03-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录