我的编程空间,编程开发者的网络收藏夹
学习永远不晚

【机器学习】了解 AUC - ROC 曲线

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

【机器学习】了解 AUC - ROC 曲线

一、说明

        在机器学习中,性能测量是一项基本任务。因此,当涉及到分类问题时,我们可以依靠AUC - ROC曲线。当我们需要检查或可视化多类分类问题的性能时,我们使用AUC(曲线下面积)ROC(接收器工作特性)曲线。它是检查任何分类模型性能的最重要评估指标之一。

 本博客旨在回答以下问题:

  • 1. 什么是 AUC - ROC 曲线?
  • 2. 定义 AUC 和 ROC 曲线中使用的术语。
  • 3. 如何推测模型的性能?
  • 4. 敏感性、特异性、FPR 和阈值之间的关系。
  • 5. 如何在多类模型中使用 AUC - ROC 曲线?

二、什么是 AUC - ROC 曲线?

        AUC - ROC 曲线是各种阈值设置下分类问题的性能度量。ROC 是一条概率曲线,AUC 表示可分离性的程度或度量。它告诉模型能够区分类的程度。AUC 越高,模型在将 0 个类预测为 0 和将 1 个类预测为 1 方面越好。以此类推,AUC越高,模型在区分有疾病和无疾病患者方面就越好。

        ROC 曲线使用 TPR 与 FPR 绘制,其中 TPR 在 y 轴上,FPR 在 x 轴上。

AUC - ROC 曲线

 

三、定义 AUC 和 ROC 曲线中使用的术语。

3.1 TPR(真阳性率)/召回率/灵敏度

 

3.2 特异性

 

3.3 FPR

 

四、如何推测模型的性能?

        优秀的模型的 AUC 接近 1,这意味着它具有良好的可分离性。较差的模型的 AUC 接近 0,这意味着它的可分离性度量最差。事实上,这意味着它正在回报结果。它将 0 预测为 1,将 1 预测为 0。当 AUC 为 0.5 时,意味着模型没有任何类别分离能力。 我们来解读一下上面的说法。 众所周知,ROC是一条概率曲线。那么让我们绘制这些概率的分布: 注:红色分布曲线为正类(患病患者),绿色分布曲线为负类(无疾病患者)。

        这是一个理想的情况。当两条曲线完全不重叠时,意味着模型具有理想的可分离性度量。它完全能够区分正类和负类。

        

        当两个分布重叠时,我们引入类型 1 和类型 2 错误。根据阈值,我们可以最小化或最大化它们。当 AUC 为 0.7 时,这意味着模型有 70% 的机会能够区分正类和负类。

        

        这是最糟糕的情况。当AUC约为0.5时,模型没有区分正类和负类的判别能力。

        

        当 AUC 大约为 0 时,模型实际上是在往复类。这意味着模型将负类预测为正类,反之亦然。

五、灵敏度、特异性、FPR 和阈值之间的关系。

        敏感性和特异性成反比。因此,当我们增加灵敏度时,特异性会降低,反之亦然。

敏感性,特异性和敏感性⬆️⬇️,特异性⬇️⬆️

        当我们降低阈值时,我们得到更多的正值,从而增加敏感性并降低特异性。

        同样,当我们增加阈值时,我们会得到更多的负值,从而获得更高的特异性和更低的灵敏度。

        众所周知,FPR 是 1 - 特异性。因此,当我们增加TPR时,FPR也会增加,反之亦然。

TPR,FPR和TPR,FPR⬆️⬆️⬇️⬇️

六、如何在多类模型中使用 AUC ROC 曲线?

        在多类模型中,我们可以使用 One vs ALL 方法绘制 N 个类的 N 个 AUC ROC 曲线。例如,如果您有名为 X、Y 和 Z 的三个类,则将有一个针对 Y 和 Z 分类的 X 的 ROC,另一个针对 Y 分类的 Y 的 ROC,以及针对 Y 和 X 分类的第三个 Z。

来源地址:https://blog.csdn.net/gongdiwudu/article/details/131738899

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

【机器学习】了解 AUC - ROC 曲线

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

机器学习入门必读:6种简单实用算法及学习曲线

01 机器学习算法 1. 分类算法 这是一种监督学习方法。有很多算法帮助我们解决分类问题,比如K近邻、决策树、朴素贝叶斯、贝叶斯网络、逻辑回归、SVM等算法。人工神经网络和深度学习也往往用来解决分类问题。这些都是常见和常用的分类算法,只不过不同的算法都有其优劣,会应用在不同的场景下。我们一起看看下,机器学习入门必读有那些的。
机器学习入门必读:6种简单实用算法及学习曲线
2024-04-23

机器学习多项式拟合曲线的原理是什么

机器学习多项式拟合曲线的原理是通过使用多项式函数来拟合给定数据集中的样本点,以达到最佳拟合的目标。具体原理如下:1. 多项式表示:在多项式拟合中,我们使用多项式函数来表示数据的关系。多项式函数的形式通常为 f(x) = w0 + w1*x
2023-09-25

Python机器学习性能度量利用鸢尾花数据绘制P-R曲线

这篇文章主要为大家介绍了Python机器学习性能度量利用鸢尾花数据绘制P-R曲线示例学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-02-15

编程热搜

目录