我的编程空间,编程开发者的网络收藏夹
学习永远不晚

浅谈pandas中对nan空值的判断和陷阱

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

浅谈pandas中对nan空值的判断和陷阱

pandas基于numpy,所以其中的空值nan和numpy.nan是等价的。numpy中的nan并不是空对象,其实际上是numpy.float64对象,所以我们不能误认为其是空对象,从而用bool(np.nan)去判断是否为空值,这是不对的。

对于pandas中的空值,我们该如何判断,并且有哪些我们容易掉进去的陷阱,即不能用怎么样的方式去判断呢?

可以判断pandas中单个空值对象的方式:

1、利用pd.isnull(),pd.isna();

2、利用np.isnan();

3、利用is表达式;

4、利用in表达式。

不可以用来判断pandas单个空值对象的方式:

1、不可直接用==表达式判断;

2、不可直接用bool表达式判断;

3、不可直接用if语句判断。

示例:


import pandas as pd
import numpy as np 
na=np.nan 
# 可以用来判断空值的方式
pd.isnull(na) # True
pd.isna(na) # True
np.isnan(na) # True
na is np.nan # True
na in [np.nan] # True 
 
# 不可以直接用来判断的方式,即以下结果和我们预期不一样
na == np.nan # False
bool(na) # True
if na:
  print('na is not null') # Output: na is not null 
 
# 不可以直接用python内置函数any和all
any([na]) # True
all([na]) #True

总结

numpy.nan是一个numpy.float64的非空对象,所以不能直接用bool表达式去判断,故一切依赖于布尔表达式的判断方式都不行,比如if语句。

对于pandas中空值的判断,我们只能通过pandas或者numpy的函数和is表达式去判断,不能用python的内置函数any或all判断。

比较奇怪的一点是pandas中空值的判断可以用is表达式判断,但是不能用==表达式判断。我们知道,对于is表达式,如果返回True,表示这两个引用指向的是同一个内存对象,即内存地址是一样的,一般同一个对象的不同引用的值也应该是相等的,所以一般is表达式为True,那么==表达式也为True。

但是对于numpy.nan对象显然不是这样的,因为其可以用is表达式判断,即当is表达式为True时,但==表达式为False,这说明虽然不同numpy.nan变量引用指向的是同一个内存地址,但是其具有自己的值属性,值是不一样的,所以不能用==来判断,这点需要注意。

补充:Pandas+Numpy 数据中空值的处理操作:判断、查找、填充及删除

本文整理了数据中空值的处理操作,主要内容如下:

为了便于描述,定义本文示例数据为如下结构:


df = pd.DataFrame([[1, np.nan], [np.nan, 4], [5,6],[np.nan,7]],columns=["A","B"])
df #定义示例数据df

判断数据中是否有空值

pandas isnull()函数


df.isnull()  #返回df中各元素是否为空的同df大小的数据框 
df["A"].isnull() #判断A列中空值情况 
df[["A","B"]].isnull() # 指定多列进行空值判断,对于本文实例,下述代码效果同df.isnull() 

pandas notnull()函数


df.notnull()  #判断df中各元素是否 不是 空值 
df["A"].isnull() #判断A列中非空值情况 
df[["A","B"]].isnull() # 指定多列进行非空值判断,对于本文实例,下述代码效果同df.notnull() 

numpy np.isnan() 函数


np.isnan(df)  # 等同于df.isnull() 
np.isnan(df["A"])  # 等同于 df["A"].isnull() 
np.isnan(df[["A","B"]]) # 等同于 df[["A","B"]].isnull()

统计空值/非空值数量


df.isnull().sum() # 统计每列的空值数量 
df.notnull().sum() # 统计每列的非空值数量 
 
df["A"].count()   # A列 非空数量
df.count()     # 统计所有列的非空值数量
df.count(axis=1)  # 每行非空值数量,axis=1 
df["A"].sum()   # A列 元素数值之和

根据空值筛选数据


# 筛选出A列为空的所有行
df[df.A.isnull()]  
df[df["A"].isnull()] 
 
# 筛选出A列非空的所有行
df[df.A.notnull()]  
df[df["A"].notnull()]    
 
# 筛选出df中存在空值的行
df[df.isnull().values==True] 

查找空值索引


np.where(np.isnan(df))  # df中空值所在的行索引及列索引 
np.where(np.isnan(df.A))  # df中A列空值所在的行索引

删除空值 dropna()函数


df.dropna()  # 删除存在空值的行,默认axis=0按行,how=any每行存在一个空值就执行删除行操作 
df.dropna(axis=1) # 删除存在空值的列 
df.dropna(how="all") # 删除所有列都为空值的特定行 
df.dropna(how = "any")  # 删除存在空值的行
 
# 对特定列空值进行删除 
df.dropna(how="any",subset=["A"]) # 删除A列中存在空值的行
 df.dropna(how="any",subset=["A","B"]) # 删除A,B列中只要有一列存在空值的行
 
#将删除操作作用于原数据,修改替换原数据
 df.dropna(how="all",subset=["A","B"],inplace=True) # 删除A,B列都为空值的行,并替换原数据

填充空值fillna()函数


# 用指定的数字来填充
df.fillna(0)  # 用0来填充df中的空值
 
# 用指定的函数统计值来填充
df.fillna(df.mean()) # 用df中数据的平均值来填充空值 
df.fillna(df.mean()["A"])  #指定用A列数据均值来填充df中空值 
df.fillna(df.sum())  # 用df中数据的和来填充空值
 
# 用字典来填充
values = {'A': 0, 'B': 1}  # A列空值用0填充,B列空值用1填充
df.fillna(value=values)  
 
# 用指定字符串来填充空值
df.fillna("unkown")
 
# 不同的填充方式{‘backfill', ‘bfill', ‘pad', ‘ffill', None}
# 每列的空值,用其列下方非空数值填充
df.fillna(method="backfill") 
df.fillna(method="bfill")  # 同backfill
# 每列的空值,用其所在列上方非空数值填充,若上方没有元素,保持空值
df.fillna(method="ffill") 
df.fillna(method="pad")   # 同 ffill
 
#limit参数设置填充空值的最大个数
df.fillna(0,limit=1) # 每列最多填充1个空值,超过范围的空值依然为空
 
#inplace参数空值是否修改原数据df
df.fillna(0,inplace=True) # inplace为true,将修改作用于原数据

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

浅谈pandas中对nan空值的判断和陷阱

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录