我的编程空间,编程开发者的网络收藏夹
学习永远不晚

OpenCV-Python图像轮廓之轮廓特征详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

OpenCV-Python图像轮廓之轮廓特征详解

前言

图像轮廓是指由位于边缘、连续的、具有相同颜色和强度的点构成的曲线,它可以用于形状分析以及对象检测和识别。

一、轮廓的矩

轮廓的矩包含了轮廓的各种几何特征,如面积、位置、角度、形状等。cv2.moments()函数用于返回轮廓的矩,其基本格式如下:


ret = cv2.moments(array[, binaryImage])

ret为返回的轮廓的矩,是一个字典对象, 大多数矩的含义比较抽象, 但其中的零阶矩(m00)表示轮廓的面积
array为表示轮廓的数组
binaryImage值为True时,会将array对象中的所有非0值设置为1

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('shape2.jpg')
cv2.imshow('original', img)

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

img1 = np.zeros(img.shape, np.uint8) + 255

img1 = cv2.drawContours(img1, contours, -1,(0,255,0),2)
cv2.imshow('Contours',img1)

m0 = cv2.moments(contours[0])
m1 = cv2.moments(contours[1])

print('轮廓0的矩:', m0)
print('轮廓1的矩:', m1)

print('轮廓0的面积:', m0['m00'])
print('轮廓1的面积:', m1['m00'])

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

在这里插入图片描述

二、轮廓的面积

cv2.contourArea()函数用于返回轮廓的面积,其基本格式如下:


ret = cv2.contourArea(contour[, oriented])

ret为返回的面积
contour为轮廓
oriented为可选参数, 其参数值为True时, 返回值的正与负表示表示轮廓是顺时针还是逆时针, 参数值为False(默认值)时, 函数返回值为绝对值

img = cv2.imread('shape2.jpg')

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

m0 = cv2.contourArea(contours[0])
m1 = cv2.contourArea(contours[1])

print('轮廓0的面积:', m0)
print('轮廓1的面积:', m1)

在这里插入图片描述

三、轮廓的长度

cv2.arcLength()函数用于返回轮廓的长度,其基本格式如下:


ret = cv2.cv2.arcLength(contour, closed)

ret为返回的长度
contour为轮廓
closed为布尔值, 为True时表示轮廓是封闭的

img = cv2.imread('shape2.jpg')

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

m0 = cv2.arcLength(contours[0], True)
m1 = cv2.arcLength(contours[1], True)

print('轮廓0的长度:', m0)
print('轮廓1的长度:', m1)

在这里插入图片描述

四、轮廓的近似多边形

cv2.approxPolyDP()函数用于返回轮廓的近似多边形,其基本格式如下:


ret = cv2.cv2.arcLength(contour, epsilon, closed)

ret为返回的近似多边形
contour为轮廓
epsilon为精度, 表示近似多边形接近轮廓的最大距离
closed为布尔值, 为True时表示轮廓是封闭的

img = cv2.imread('shape3.jpg')
cv2.imshow('original', img)

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

img1 = np.zeros(img.shape, np.uint8) + 255
img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2)
cv2.imshow('Contours',img1)

arcl = cv2.arcLength(contours[0], True)

img2 = img1.copy()
app = cv2.approxPolyDP(contours[0], arcl*0.05, True)
img2 = cv2.drawContours(img2, [app], -1, (255,0,0), 2)
cv2.imshow('contours',img2)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

五、轮廓的凸包

cv2.convexHull()函数用于返回轮廓的凸包,其基本格式如下:


hull = cv2.convexHull(contours[, clockwise[, returnPointss]])

hull为返回的凸包, 是一个numpy.ndarray对象, 包含了凸包的关键点
contours为轮廓
clockwise为方向标记, 为True时, 凸包为顺时针方向, 为False(默认值)时, 凸包为逆时针方向
returnPointss为True时(默认值)时, 返回的hull中包含的是凸包关键点的坐标, 为False时, 返回的是凸包关键点在轮廓中的索引

img = cv2.imread('shape3.jpg')

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

img1 = np.zeros(img.shape, np.uint8) + 255
img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2)
cv2.imshow('Contours',img1)

hull = cv2.convexHull(contours[0])
print('returnPoints = Treu 时返回的凸包;\n',hull)

hull2 = cv2.convexHull(contours[0], returnPoints=False)
print('returnPoints = False时返回的凸包;\n',hull2)

cv2.polylines(img1, [hull], True, (255,0,0),2)
cv2.imshow('ConvecHull',img1)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

在这里插入图片描述

六、轮廓的直边界矩形

轮廓的直边界矩形是指可容纳轮廓的矩形,且矩形的两条边必须是平行的,直边界矩形不一定是面积最小的边界矩形。

cv2.boundingRect()函数用于返回轮廓的直边界矩形,其基本格式如下:


ret = cv2.boundingRect(contours)

ret为返回的直边界矩形, 它是一个四元组, 其格式为(矩形左上角x坐标, 矩形左上角y坐标, 矩形的宽度, 矩形的高度)
contours为用于计算直边界矩形的轮廓

img = cv2.imread('shape4.jpg')
cv2.imshow('original', img)

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

img1 = np.zeros(img.shape, np.uint8) + 255

img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2)
cv2.imshow('Contours',img1)

ret = cv2.boundingRect(contours[0])
print('直边界矩形:\n', ret)

pt1 = (ret[0], ret[1])
pt2 = (ret[0] + ret[2], ret[1] + ret[3])
img2 = img1.copy()
img2 = cv2.rectangle(img2, pt1, pt2, (255,0,0), 1)
cv2.imshow('Rectangle', img2)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

在这里插入图片描述

七、轮廓的旋转矩形

轮廓的旋转矩形是指可容纳轮廓的面积最小的矩形。

cv2.minAreaRect()函数用于返回轮廓的旋转矩形,其基本格式如下:


box = cv2.minAreaRect(contour)

box为返回的旋转矩阵, 它是一个三元组, 其格式为((矩形中心点x坐标, 矩形中心点y坐标), (矩形的宽度, 矩形的高度), 矩形的旋转角度)
contour为用于计算矩形的轮廓

cv2.minAreaRect()函数返回的结果不能直接用于绘制旋转矩形,可以使用cv2.boxPoints()函数将其转换为矩形的顶点坐标,其基本格式如下:


points = cv2.boxPoints(box)

points为返回的矩形顶点坐标, 坐标数据为浮点数
box为cv2.minAreaRect()函数返回的矩形数据

img = cv2.imread('shape4.jpg')
cv2.imshow('original', img)

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

img1 = np.zeros(img.shape, np.uint8) + 255
cv2.drawContours(img1, contours, -1, (0,0,255) ,2)
cv2.imshow('Contours',img1)

# 计算最小旋转矩形
ret = cv2.minAreaRect(contours[0])
rect = cv2.boxPoints(ret)
rect = np.int0(rect)

img2 = img1.copy()
cv2.drawContours(img2, [rect], 0, (255,0,0), 2)
cv2.imshow('Rectangle', img2)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

八、轮廓的最小外包圆

cv2.minEnclosingCircle()函数用于返回可容纳轮廓的最小外包圆,其基本格式如下:


center, radius = cv2.minEnclosingCircle(contours)

center为圆心
radius为半径
contours为用于计算最小外包圆的轮廓

img = cv2.imread('shape4.jpg')
cv2.imshow('original', img)

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

img1 = np.zeros(img.shape, np.uint8) + 255
cv2.drawContours(img1, contours, -1, (0,0,255) ,2)
cv2.imshow('Contours',img1)

# 计算最小外包圆
(x, y), radius = cv2.minEnclosingCircle(contours[0])
center = (int(x),int(y))
radius = int(radius)

img2 = img1.copy()
cv2.circle(img2, center, radius, (255,0,0),2)
cv2.imshow('Circle',img2)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

九、轮廓的拟合椭圆

cv2.fitEllipse()函数用于返回轮廓的拟合椭圆,其基本格式如下:


ellipse = cv2.fitEllipse(contours)

ellipse为返回的椭圆
contours为用于计算拟合椭圆的轮廓

img = cv2.imread('shape4.jpg')
cv2.imshow('original', img)

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

img1 = np.zeros(img.shape, np.uint8) + 255
cv2.drawContours(img1, contours, -1, (0,0,255) ,2)
cv2.imshow('Contours',img1)

# 计算拟合椭圆
ellipse = cv2.fitEllipse(contours[0])

img2 = img1.copy()
cv2.ellipse(img2, ellipse, (255,0,0),2)
cv2.imshow('Circle',img2)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

十、轮廓的拟合直线

cv2.fitLine()函数用于返回轮廓的拟合直线,其基本格式如下:


line = cv2.fitLine(contours, distType, param, reps, aeps)

line为返回的拟合直线
contours为用于计算拟合直线的轮廓
distType为距离参数类型, 决定如何计算拟合直线
param为距离参数, 与距离参数类型有关, 其设置为0时, 函数将自动选择最优值
reps为计算拟合直线需要的径向精度, 通常设置为0.01
aeps为计算拟合直线需要的轴向精度, 通常设置为0.01

param距离参数类型:


img = cv2.imread('shape4.jpg')            
cv2.imshow('original', img)

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

img1 = np.zeros(img.shape, np.uint8) + 255      
cv2.drawContours(img1, contours, -1, (0,0,255), 2)
cv2.imshow('Contours',img1)

#计算拟合直线
img2 = img1.copy()
rows, cols = img.shape[:2]
[vx, vy, x, y] = cv2.fitLine(contours[0], cv2.DIST_L1, 0, 0.01, 0.01)
lefty = int((-x * vy / vx) + y)
righty = int(((cols - x) * vy / vx) + y)
cv2.line(img2, (0, lefty), (cols-1, righty), (255,0,0), 2)   

cv2.imshow('FitLine',img2)  
cv2.waitKey(0)
cv2.destroyAllWindows()   

在这里插入图片描述

十一、轮廓的最小外包三角形

cv2.minEnclosingTriangle()函数用于返回可容纳轮廓的最小外包三角形,其基本格式如下:


retval, triangle = cv2.minEnclosingTriangle(contours)

retval为最小外包三角形的面积
triangle为最小外包三角形
contours为用于计算最小外包三角形的轮廓

img = cv2.imread('shape4.jpg')
cv2.imshow('original', img)

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

img1 = np.zeros(img.shape, np.uint8) + 255
cv2.drawContours(img1, contours, -1, (0,0,255) ,2)
cv2.imshow('Contours',img1)

# 计算最小外包三角形
retval, triangle = cv2.minEnclosingTriangle(contours[0])
triangle = np.int0(triangle)

img2 = img1.copy()
cv2.polylines(img2, [triangle], True, (255,0,0),2)
cv2.imshow('Triangle',img2)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

以上就是OpenCV-Python图像轮廓之轮廓特征详解的详细内容,更多关于OpenCV-Python轮廓特征的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

OpenCV-Python图像轮廓之轮廓特征详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

OpenCV图像轮廓提取的实现

本文主要介绍了OpenCV图像轮廓提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2022-11-13

怎么在Python中使用OpenCV实现轮廓的特征值

本篇文章给大家分享的是有关怎么在Python中使用OpenCV实现轮廓的特征值,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。宽高比在轮廓中,我们可以通过宽高比来描述轮廓,例如矩
2023-06-15

怎么在Python中使用OpenCV标记图像区域轮廓

这期内容当中小编将会给大家带来有关怎么在Python中使用OpenCV标记图像区域轮廓,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。图片基本处理import cv2 as cvsrc = cv.imrea
2023-06-09

怎么利用Python+OpenCV实现简易图像边缘轮廓检测

本篇内容主要讲解“怎么利用Python+OpenCV实现简易图像边缘轮廓检测”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么利用Python+OpenCV实现简易图像边缘轮廓检测”吧!函数基础
2023-06-30

python中opencv图像金字塔轮廓及模板匹配是怎样的

这篇文章给大家介绍python中opencv图像金字塔轮廓及模板匹配是怎样的,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。1.图像金字塔①高斯金字塔向下采样,数据会越来越少,减少的方式是:将偶数行和列删除向上采样,数据
2023-06-25

怎么在python中使用opencv查找图像中的最大的轮廓

本篇文章给大家分享的是有关怎么在python中使用opencv查找图像中的最大的轮廓,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。具体如下:import cv2import n
2023-06-09

Python图像处理之如何实现目标物体轮廓提取

这篇文章将为大家详细讲解有关Python图像处理之如何实现目标物体轮廓提取,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1 引言目标物体的边缘对图像识别和计算机分析十分有用。边缘可以勾画出目标物体,使观察
2023-06-20

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录