我的编程空间,编程开发者的网络收藏夹
学习永远不晚

pytorch中的优化器optimizer.param_groups用法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

pytorch中的优化器optimizer.param_groups用法

optimizer.param_groups: 是长度为2的list,其中的元素是2个字典;

optimizer.param_groups[0]: 长度为6的字典,包括[‘amsgrad', ‘params', ‘lr', ‘betas', ‘weight_decay', ‘eps']这6个参数;

optimizer.param_groups[1]: 好像是表示优化器的状态的一个字典;


import torch
import torch.optim as optimh2
w1 = torch.randn(3, 3)
w1.requires_grad = True
w2 = torch.randn(3, 3)
w2.requires_grad = True
o = optim.Adam([w1])
print(o.param_groups)

[{'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[ 2.9064, -0.2141, -0.4037],
           [-0.5718,  1.0375, -0.6862],
           [-0.8372,  0.4380, -0.1572]])],
  'weight_decay': 0}]

Per the docs, the add_param_group method accepts a param_group parameter that is a dict. Example of use:h2import torch
import torch.optim as optimh2
w1 = torch.randn(3, 3)
w1.requires_grad = True
w2 = torch.randn(3, 3)
w2.requires_grad = True
o = optim.Adam([w1])
print(o.param_groups)
givesh2[{'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[ 2.9064, -0.2141, -0.4037],
           [-0.5718,  1.0375, -0.6862],
           [-0.8372,  0.4380, -0.1572]])],
  'weight_decay': 0}]
nowh2o.add_param_group({'params': w2})
print(o.param_groups)

[{'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[ 2.9064, -0.2141, -0.4037],
           [-0.5718,  1.0375, -0.6862],
           [-0.8372,  0.4380, -0.1572]])],
  'weight_decay': 0},
 {'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[-0.0560,  0.4585, -0.7589],
           [-0.1994,  0.4557,  0.5648],
           [-0.1280, -0.0333, -1.1886]])],
  'weight_decay': 0}]

# 动态修改学习率
for param_group in optimizer.param_groups:
    param_group["lr"] = lr 
# 得到学习率optimizer.param_groups[0]["lr"] h2# print('查看optimizer.param_groups结构:')
# i_list=[i for i in optimizer.param_groups[0].keys()]
# print(i_list)    
['amsgrad', 'params', 'lr', 'betas', 'weight_decay', 'eps']

补充:pytorch中的优化器总结

以SGD优化器为例:


# -*- coding: utf-8 -*-
#@Time    :2019/7/3 22:31
#@Author  :XiaoMa
 
from torch import nn as nn
import torch as t
from torch.autograd import Variable as V
#定义一个LeNet网络
class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.features=nn.Sequential(
            nn.Conv2d(3,6,5),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
            nn.Conv2d(6,16,5),
            nn.ReLU(),
            nn.MaxPool2d(2,3)
        )
        
        self.classifier=nn.Sequential(\
            nn.Linear(16*5*5,120),
            nn.ReLU(),
            nn.Linear(120,84),
            nn.ReLU(),
            nn.Linear(84,10)
            )
    def forward(self, x):
        x=self.features(x)
        x=x.view(-1,16*5*5)
        x=self.classifier(x)
        return x
net=Net()
 
from torch import optim #优化器
optimizer=optim.SGD(params=net.parameters(),lr=1)
optimizer.zero_grad()   #梯度清零,相当于net.zero_grad()
 
input=V(t.randn(1,3,32,32))
output=net(input)
output.backward(output)     #fake backward
optimizer.step()    #执行优化
 
#为不同子网络设置不同的学习率,在finetune中经常用到
#如果对某个参数不指定学习率,就使用默认学习率
optimizer=optim.SGD(
    [{'param':net.features.parameters()},    #学习率为1e-5
    {'param':net.classifier.parameters(),'lr':1e-2}],lr=1e-5
)
 
#只为两个全连接层设置较大的学习率,其余层的学习率较小
special_layers=nn.ModuleList([net.classifier[0],net.classifier[3]])
special_layers_params=list(map(id,special_layers.parameters()))
base_params=filter(lambda p:id(p) not in special_layers_params,net.parameters())
 
optimizer=t.optim.SGD([
    {'param':base_params},
    {'param':special_layers.parameters(),'lr':0.01}
],lr=0.001)

调整学习率主要有两种做法。

一种是修改optimizer.param_groups中对应的学习率,另一种是新建优化器(更简单也是更推荐的做法),由于optimizer十分轻量级,构建开销很小,故可以构建新的optimizer。

但是新建优化器会重新初始化动量等状态信息,这对使用动量的优化器来说(如自带的momentum的sgd),可能会造成损失函数在收敛过程中出现震荡。

如:


#调整学习率,新建一个optimizer
old_lr=0.1
optimizer=optim.SGD([
                {'param':net.features.parameters()},
                {'param':net.classifiers.parameters(),'lr':old_lr*0.5}],lr=1e-5)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

pytorch中的优化器optimizer.param_groups用法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

pytorch中优化器optimizer.param_groups用法的示例分析

小编给大家分享一下pytorch中优化器optimizer.param_groups用法的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!optimizer.param_groups: 是长度为2的list,其中的元
2023-06-15

PyTorch中怎么选择合适的优化器

在PyTorch中,选择合适的优化器取决于您的模型和训练任务。以下是一些常用的优化器及其适用场景:SGD(随机梯度下降):SGD是最基本的优化器,在训练简单模型时通常表现良好。但对于复杂模型或非凸优化问题,SGD可能会收敛较慢。Adam:A
PyTorch中怎么选择合适的优化器
2024-03-05

PyTorch中可视化工具的使用

本文主要介绍了PyTorch中可视化工具的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-05-15

Pytorch中的torch.nn.Linear()方法用法解读

torch.nn.Linear()方法是一种线性变换层,用于PyTorch中的神经网络,执行矩阵乘法,将输入特征映射到输出特征。其语法为:torch.nn.Linear(in_features,out_features,bias=True),其中in_features为输入特征数量,out_features为输出特征数量,bias是否使用偏置项。在正向传播中,它执行out=weight@input+bias;在反向传播中,计算权重梯度和偏置项梯度。该方法可以用于各种神经网络任务。
Pytorch中的torch.nn.Linear()方法用法解读
2024-04-02

Android中SparseArray性能优化的使用方法

之前一篇文章研究完横向二级菜单,发现其中使用了SparseArray去替换HashMap的使用.于是乎自己查了一些相关资料,自己同时对性能进行了一些测试。首先先说一下SparseArray的原理. SparseArray(稀疏数组).他
2022-06-06

Torch中常用的优化算法有哪些

在Torch中常用的优化算法包括:随机梯度下降(SGD)Adam优化算法Adagrad优化算法RMSprop优化算法Adadelta优化算法Adamax优化算法Nadam优化算法这些优化算法在深度学习中被广泛应用,每种算法都有其
Torch中常用的优化算法有哪些
2024-03-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录