我的编程空间,编程开发者的网络收藏夹
学习永远不晚

JavaCountDownLatch的源码硬核解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

JavaCountDownLatch的源码硬核解析

前言

对于并发执行,Java中的CountDownLatch是一个重要的类,简单理解, CountDownLatchcount down是倒数的意思,latch则是“门闩”的含义。在数量倒数到0的时候,打开“门闩”, 一起走,否则都等待在“门闩”的地方。

为了更好的理解CountDownLatch这个类,本文通过例子和源码带领大家深入解析这个类的原理。

介绍和使用

例子

我们先通过一个例子快速理解下CountDownLatch的妙处。

最近LOL S12赛如火如荼举行,比如我们玩王者荣耀的时候,10个万玩家登入游戏,每个玩家的网速可能不一样,只有每个人进度条走完,才会一起来到王者峡谷,网速快的要等网速慢的。我们通过例子模拟下这个过程。

@Slf4j(topic = "a.CountDownLatchTest")
public class CountDownLatchTest {

    public static void main(String[] args) throws InterruptedException {
        // 创建一个倒时器,默认10个数量
        CountDownLatch latch = new CountDownLatch(10);
        ExecutorService service = Executors.newFixedThreadPool(10);
        // 设置进度数据
        String[] personProcess = new String[10];
        Random random = new Random();

        for (int i = 0; i < 10; i++) {
            int finalJ = i;
            service.submit(() -> {
                // 模拟10个人的进度条
                for (int j = 0; j <= 100; j++) {
                    // 模拟网速快慢,随机生成
                    try {
                        Thread.sleep(random.nextInt(100));
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    // 设置进度数据
                    personProcess[finalJ] = j + "%";
                   log.info("{}", Arrays.toString(personProcess));
                }

                // 运行结束,倒时器 - 1
                latch.countDown();
            });
        }
        // 打开"阀门"
        latch.await();
       log.info("王者峡谷到了");
        service.shutdown();
    }
}

运行结果:

概述

CountDownLatch一般用作多线程倒计时计数器,强制它们等待其他一组(CountDownLatch的初始化决定)任务执行完成。

构造器:

public CountDownLatch(int count):设置倒数器需要倒数的数量

常用API:

  • public void await() throws InterruptedException:调用await()方法的线程会被挂起,等待直到count值为0再继续执行。
  • public boolean await(long timeout, TimeUnit unit) throws InterruptedException:同await(),若等待timeout时长后,count值还是没有变为0,不再等待,继续执行。时间单位如下常用的毫秒、天、小时、微秒、分钟、纳秒、秒。
  • public void countDown(): count值递减1
  • public long getCount():获取当前count值

常见使用场景:

一个程序中有N个任务在执行,我们可以创建值为N的CountDownLatch,当每个任务完成后,调用一下countDown()方法进行递减count值,再在主线程中使用await()方法等待任务执行完成,主线程继续执行。

实现思路

通过前面的例子和介绍我们知道CountDownLatch的大致使用流程:

  • 创建CountDownLatch并设置计数器值。
  • 启动多线程并且调用CountDownLatch实例的countDown()方法。
  • 主线程调用 await() 方法,这样主线程的操作就会在这个方法上阻塞,直到其他线程完成各自的任务,count值为0,停止阻塞,主线程继续执行。

不妨我们先思考下,它是怎么实现的呢?我们可以问自己几个问题?

  • 如何做到可以让主线程阻塞等待在那里?是不是可以调用LockSupport.park()方法进行阻塞。
  • 那么什么时候该阻塞呢?我们需要有个变量,比如state, 如果state大于0,就阻塞主线程。
  • 那么什么时候该唤醒呢,又如何唤醒呢?如果任务执行完成后,我们让state 减去1,也就是调用countDown()方法,如果发现state是0,那么就调用LockSupport.unpark()唤醒此前阻塞的地方,继续执行。

是不是很熟悉,这就是我们的AQS共享模式的实现原理啊,不了解AQS共享模式的可以参考本篇文章:深入浅出理解Java并发AQS的共享锁模式

我们把思路理清楚后,直接看CountDownLatch的源码。

源码解析

类结构图

以上是CountDownLatch的类结构图,

  • SyncCountDownLatch的内部类,被成员变量sync持有。
  • Sync继承了AbstractQueuedSynchronizer,也就是我们大名鼎鼎的AQS。

await() 实现原理

1.线程调用 await()会阻塞等待其他线程完成任务

// CountDownLatch#await
public void await() throws InterruptedException {
    // 调用AbstractQueuedSynchronizer的acquireSharedInterruptibly方法
    sync.acquireSharedInterruptibly(1);
}
// AbstractQueuedSynchronizer#acquireSharedInterruptibly
public final void acquireSharedInterruptibly(int arg) throws InterruptedException {
    // 判断线程是否被打断,抛出打断异常
    if (Thread.interrupted())
        throw new InterruptedException();
    // 尝试获取共享锁
    // 条件成立说明 state > 0,此时线程入队阻塞等待,等待其他线程获取共享资源
    // 条件不成立说明 state = 0,此时不需要阻塞线程,直接结束函数调用
    if (tryAcquireShared(arg) < 0)
        // 阻塞当前线程的逻辑
        doAcquireSharedInterruptibly(arg);
}
// CountDownLatch.Sync#tryAcquireShared
protected int tryAcquireShared(int acquires) {
    return (getState() == 0) ? 1 : -1;
}

2.doAcquireSharedInterruptibly()方法是实现线程阻塞的核心逻辑

// AbstractQueuedSynchronizer#doAcquireSharedInterruptibly
private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
    // 将调用latch.await()方法的线程 包装成 SHARED 类型的 node 加入到 AQS 的阻塞队列中
    final Node node = addWaiter(Node.SHARED);
    boolean failed = true;
    try {
        for (;;) {
            // 获取当前节点的前驱节点
            final Node p = node.predecessor();
            // 前驱节点时头节点就可以尝试获取锁
            if (p == head) {
                // 再次尝试获取锁,获取成功返回 1
                int r = tryAcquireShared(arg);
                if (r >= 0) {
                    // 获取锁成功,设置当前节点为 head 节点,并且向后传播
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
            }
            // 阻塞在这里
            if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
        // 阻塞线程被中断后抛出异常,进入取消节点的逻辑
        if (failed)
            cancelAcquire(node);
    }
}

3.parkAndCheckInterrupt()方法中会进行阻塞操作

private final boolean parkAndCheckInterrupt() {
    	// 阻塞线程
        LockSupport.park(this);
        return Thread.interrupted();
    }

countDown()实现原理

1.任务结束调用 countDown() 完成计数器减一(释放锁)的操作

public void countDown() {
    sync.releaseShared(1);
}

public final boolean releaseShared(int arg) {
    // 尝试释放共享锁
    if (tryReleaseShared(arg)) {
        // 释放锁成功开始唤醒阻塞节点
        doReleaseShared();
        return true;
    }
    return false;
}

2.调用tryReleaseShared()方法尝试释放锁,true表示state等于0,去唤醒阻塞线程。

protected boolean tryReleaseShared(int releases) {
    for (;;) {
        int c = getState();
        // 条件成立说明前面【已经有线程触发唤醒操作】了,这里返回 false
        if (c == 0)
            return false;
        // 计数器减一
        int nextc = c-1;
        if (compareAndSetState(c, nextc))
            // 计数器为 0 时返回 true
            return nextc == 0;
    }
}

3.调用doReleaseShared()唤醒阻塞的节点

private void doReleaseShared() {
    for (;;) {
        Node h = head;
        // 判断队列是否是空队列
        if (h != null && h != tail) {
            int ws = h.waitStatus;
            // 头节点的状态为 signal,说明后继节点没有被唤醒过
            if (ws == Node.SIGNAL) {
                // cas 设置头节点的状态为 0,设置失败继续自旋
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;
                // 唤醒后继节点
                unparkSuccessor(h);
            }
            // 如果有其他线程已经设置了头节点的状态,重新设置为 PROPAGATE 传播属性
            else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                continue;
        }
        // 条件不成立说明被唤醒的节点非常积极,直接将自己设置为了新的head,
        // 此时唤醒它的节点(前驱)执行 h == head 不成立,所以不会跳出循环,会继续唤醒新的 head 节点的后继节点
        if (h == head)
            break;
    }
}

以上就是Java CountDownLatch的源码硬核解析的详细内容,更多关于Java CountDownLatch的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

JavaCountDownLatch的源码硬核解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

JavaCountDownLatch的源码硬核解析

对于并发执行,Java中的CountDownLatch是一个重要的类。为了更好的理解CountDownLatch这个类,本文将通过例子和源码带领大家深入解析这个类的原理,感兴趣的可以学习一下
2022-11-13

Java CountDownLatch线程同步源码硬核解析

对于并发执行,Java中的CountDownLatch是一个重要的类。为了更好的理解CountDownLatch这个类,本文将通过例子和源码带领大家深入解析这个类的原理,感兴趣的可以学习一下
2023-01-28

Android内核代码wake_up源码解析

这篇文章主要为大家介绍了Android内核代码wake_up源码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-08

Android内核wake_up源码分析

今天小编给大家分享一下Android内核wake_up源码分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。内核中通常用法:
2023-07-05

Druid核心源码分析DruidDataSource

这篇“Druid核心源码分析DruidDataSource”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Druid核心源码分
2023-07-05

Backbone前端框架核心及源码解析

这篇文章主要为大家介绍了Backbone前端框架核心及源码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-02-07

flutter图片组件核心类源码解析

这篇文章主要为大家介绍了flutter图片组件源码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-16

Java SpringBoot核心源码的示例分析

本篇文章给大家分享的是有关Java SpringBoot核心源码的示例分析,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。SpringBoot源码主线分析我们要分析一个框架的源码
2023-06-22

Spring AOP核心功能源码分析

这篇“Spring AOP核心功能源码分析”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Spring AOP核心功能源码分析
2023-07-05

如何分析Linux内核源码do_fork

本篇文章为大家展示了如何分析Linux内核源码do_fork,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。我们都知道进程是Linux内核中最为重要的一个抽象概念,那么我们平时在fork一个进程时,该
2023-06-16

linux内核中list链表的源码分析

这篇文章将为大家详细讲解有关linux内核中list链表的源码分析,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。linux kernel里的很多数据结构都很经典, list链表就是其中之一,
2023-06-06

kafka核心消费逻辑源码分析

本篇内容主要讲解“kafka核心消费逻辑源码分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“kafka核心消费逻辑源码分析”吧!消费逻辑框架搭建好之后着手开发下kafka的核心消费逻辑,流式图
2023-07-06

SpringApplicationListener源码解析

这篇文章主要为大家介绍了SpringApplicationListener源码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-01-15

Linux内核网络协议栈源码剖析

Linux内核网络协议栈是一个非常庞大和复杂的软件系统,涉及到很多不同的模块和功能。以下是一个大致的剖析步骤:1. 网络协议栈的初始化:从内核启动开始,网络协议栈的初始化是一个非常重要的步骤。在这个过程中,会初始化各种网络协议的数据结构,如
2023-09-23

源码分析Vue3响应式核心之effect

这篇文章主要为大家详细介绍了Vue3响应式核心之effect的相关知识,文中的示例代码讲解详细,对我们学习Vue3有一定的帮助,需要的可以参考一下
2023-05-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录