我的编程空间,编程开发者的网络收藏夹
学习永远不晚

GCN 图神经网络使用详解 可视化 Pytorch

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

GCN 图神经网络使用详解 可视化 Pytorch

手动尝试GCN图神经网络

最近,图上的深度学习已经成为深度学习社区中最热门的研究领域之一。 在这里,图神经网络(GNN)旨在将经典的深度学习概念推广到不规则的结构化数据(与图像或文本形成对比),并使神经网络能够推理出对象及其关系。

本内容介绍一些关于通过基于PyTorch几何(PyG)库的图神经网络对图进行深度学习的基本概念。PyTorch geometry是流行的深度学习框架PyTorch的扩展库,由各种方法和实用程序组成,以简化图神经网络的实现。

在开始之前,先介绍一下配置环境:

Pytorch: 1.8.0       Cuda: 10.2    Torch-geometric

# 导入使用的模块包
import torch
import networkx as nx
import matplotlib.pyplot as plt
 
# 定义最后可视化的函数
def visualize(h, color, epoch=None, loss=None):
    plt.figure(figsize=(7,7))
    plt.xticks([])
    plt.yticks([])
 
    if torch.is_tensor(h):
        h = h.detach().cpu().numpy()
        plt.scatter(h[:, 0], h[:, 1], s=140, c=color, cmap="Set2")
        if epoch is not None and loss is not None:
            plt.xlabel(f'Epoch: {epoch}, Loss: {loss.item():.4f}', fontsize=16)
    else:
        nx.draw_networkx(G, pos=nx.spring_layout(G, seed=42), with_labels=False,
                         node_color=color, cmap="Set2")
    plt.show()

在这里,我们使用一张KarateClub图来进行讲解,这张图描述了一个由34名空手道俱乐部成员组成的社交网络,并记录了俱乐部外成员之间的联系。在这里,我们感兴趣的是检测由成员的交互产生的社区。

KarateClub图

from torch_geometric.datasets import KarateClub
 
dataset = KarateClub()
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}') # 1
print(f'Number of features: {dataset.num_features}') # 34
print(f'Number of classes: {dataset.num_classes}') # 4

这里输出的分别是:

  • (1)图的数量、
  • (2)特征的数量
  • (3)种类

在初始化KarateClub数据集之后,我们首先可以检查它的一些属性。

例如,我们可以看到这个数据集只持有一个图,并且这个数据集中的每个节点被分配一个34维的特征向量(唯一地描述空手道俱乐部的成员)。

此外,图中正好包含4个类,它们代表每个节点所属的团体。

现在让我们更详细地看一下底层图

   

data = dataset[0]  # Get the first graph object.
 
print(data)
print('==============================================================')
 
# Gather some statistics about the graph.
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.2f}')
print(f'Contains isolated nodes: {data.contains_isolated_nodes()}')
print(f'Contains self-loops: {data.contains_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')
Data(edge_index=[2, 156], train_mask=[34], x=[34, 34], y=[34])
==============================================================
Number of nodes: 34
Number of edges: 156
Average node degree: 4.59
Number of training nodes: 4
Training node label rate: 0.12
Contains isolated nodes: False
Contains self-loops: False
Is undirected: True

PyTorch Geometric 中的每个图形都由单个 Data 对象表示,该对象包含描述其图形表示的所有信息。

我们可以随时通过 print(data) 打印数据对象,以接收有关其属性及其形状的简短摘要:

Data(edge_index=[2, 156], x=[34, 34], y=[34], train_mask=[34])

我们可以看到该数据对象具有4个属性:

(1)edge_index:属性保存有关图连接性的信息,即每个边缘的源节点索引和目标节点索引的元组。 PyG进一步将

(2)节点特征称为x(为34个节点中的每个节点分配了一个34维特征向量),并且将

(3)节点标签称为y(每个节点被精确地分配为一个类别)。

(4)还有一个名为train_mask的附加属性,它描述了我们已经知道其社区归属的节点。 总共,我们只知道4个节点的基本标签(每个社区一个),任务是推断其余节点的社区分配。数据对象还提供一些实用程序功能来推断基础图的某些基本属性。 例如,我们可以轻松推断图中是否存在孤立的节点(即,任何节点都没有边),图是否包含自环(即(v,v)∈E)或图是否为 无向的(即,对于每个边(v,w)∈E也存在边(w,v)∈E)。

现在让我们更详细地检查edge_index的属性

from IPython.display import Javascript  # Restrict height of output cell.
display(Javascript('''google.colab.output.setIframeHeight(0, true, {maxHeight: 300})'''))
 
edge_index = data.edge_index
print(edge_index.t())
tensor([[ 0,  1],
        [ 0,  2],
        [ 0,  3],
        [ 0,  4],
        [ 0,  5],
        [ 0,  6],
        [ 0,  7],
        [ 0,  8],
         ........

这个edge_index描述了34个人的相关性。通过输出edge_index,我们可以进一步了解PyG内部是如何表示图连通性的。

我们可以看到,对于每条边,edge_index 包含两个节点索引的元组,其中第一个值描述源节点的节点索引,第二个值描述边的目标节点的节点索引。

这种表示被称为COO格式(坐标格式),通常用于表示稀疏矩阵。

PyG使用稀疏矩阵代替以密集表示形式的邻接矩阵A∈{0,1} | V |×| V | ,这是指仅保留A中的条目不为零的坐标/值。

我们可以通过将图转换为networkx库格式来进一步可视化,这种格式除了图形操作功能之外,还实现了用于可视化的强大工具

from torch_geometric.utils import to_networkx
 
G = to_networkx(data, to_undirected=True)
visualize(G, color=data.y)

数据库可视化

灰色、黄色、绿色、蓝色代表四类不同的俱乐部,其中每一个圆圈代表一个人,一共有34个人,每个人之间的关系就如edge_index所描述的那样。

现在,我们要通过在torch.nn.Module类继承中定义我们的网络架构来创建我们的第一个图神经网络

import torch
from torch.nn import Linear
from torch_geometric.nn import GCNConv
 
 
class GCN(torch.nn.Module):
    def __init__(self):
        super(GCN, self).__init__()
        torch.manual_seed(12345)
        self.conv1 = GCNConv(dataset.num_features, 4)
        self.conv2 = GCNConv(4, 4)
        self.conv3 = GCNConv(4, 2)
        self.classifier = Linear(2, dataset.num_classes)
 
    def forward(self, x, edge_index):
        h = self.conv1(x, edge_index)
        h = h.tanh()
        h = self.conv2(h, edge_index)
        h = h.tanh()
        h = self.conv3(h, edge_index)
        h = h.tanh()  # Final GNN embedding space.
        
        # Apply a final (linear) classifier.
        out = self.classifier(h)
 
        return out, h
 
model = GCN()
print(model)
GCN(
  (conv1): GCNConv(34, 4)
  (conv2): GCNConv(4, 4)
  (conv3): GCNConv(4, 2)
  (classifier): Linear(in_features=2, out_features=4, bias=True)
)

在这里,我们首先在 __init__ 中初始化我们所有的构建块,并定义我们forward网络的计算流程。 我们首先定义并堆叠三个图卷积层,这对应于聚合每个节点周围的 3 个邻域信息(所有节点最多 3个)。 此外,GCNConv 层将节点特征维数减少到 2 ,即 34→4→4→2 。 每个 GCNConv 层都通过 tanh 非线性增强。(可以换成RELU试一试)

之后,我们应用单个线性变换 (torch.nn.Linear) 作为分类器将我们的节点映射到 4 个类/社区中的 1 个。

我们返回最终分类器的输出以及GNN生成的最终节点嵌入。 我们继续通过 GCN() 初始化我们的最终模型,打印我们的模型会生成所有使用的子模块的摘要。

嵌入 Karate Club Network

让我们看看GNN产生的节点嵌入。这里,我们将初始节点特征x和图连通性信息edge_index传递给模型,并可视化其二维嵌入。

model = GCN()
 
_, h = model(data.x, data.edge_index)
print(f'Embedding shape: {list(h.shape)}')
 
visualize(h, color=data.y)

值得注意的是,即使在训练我们的模型的权重之前,该模型也会产生一个与图中的社区结构非常相似的节点嵌入

相同颜色(社区)的节点在嵌入空间中已经紧密地聚在一起,尽管我们的模型的权值是完全随机初始化的,而且到目前为止我们还没有进行任何训练!由此得出结论,gnn引入了很强的归纳偏置,导致输入图中彼此接近的节点产生类似的嵌入。

训练 Karate Club Network

但我们能做得更好吗? 让我们看一个示例,说明如何根据图中 4 个节点的社区分配知识(每个社区一个)来训练我们的网络参数:

由于我们模型中的所有内容都是可微分和参数化的,我们可以添加一些标签、训练模型并观察嵌入的反应。 在这里,我们使用半监督或转导学习程序:我们只是针对每个类的一个节点进行训练,但允许使用完整的输入图数据。

这个模型训练与任何其他PyTorch模型非常相似。除了定义我们的网络架构之外,我们还定义了一个损失标准(这里是CrossEntropyLoss),并初始化了一个随机梯度优化器(这里是Adam)。之后,我们执行多轮优化,每轮由前向和后向传递来计算我们的模型参数w.r.t.对前向传递的损失的梯度。

import time
from IPython.display import Javascript  # Restrict height of output cell.
display(Javascript('''google.colab.output.setIframeHeight(0, true, {maxHeight: 430})'''))
 
model = GCN()
criterion = torch.nn.CrossEntropyLoss()  # Define loss criterion.
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)  # Define optimizer.
 
def train(data):
    optimizer.zero_grad()  # Clear gradients.
    out, h = model(data.x, data.edge_index)  # Perform a single forward pass.
    loss = criterion(out[data.train_mask], data.y[data.train_mask])  # Compute the loss solely based on the training nodes.
    loss.backward()  # Derive gradients.
    optimizer.step()  # Update parameters based on gradients.
    return loss, h
 
for epoch in range(401):
    loss, h = train(data)
    if epoch % 10 == 0:
        visualize(h, color=data.y, epoch=epoch, loss=loss)
        time.sleep(0.3)

可以看到,训练400轮后,它的聚类是比较明显的。正如可以看到的,我们的3层GCN模型管理线性分隔社区和正确分类大多数节点。

此外,我们只用了几行代码就完成了这一切,这要感谢PyTorch geometry库,它帮助我们完成了数据处理和GNN实现。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

GCN 图神经网络使用详解 可视化 Pytorch

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

GCN 图神经网络使用详解 可视化 Pytorch

这篇文章主要介绍了GCN 图神经网络使用详解 可视化 Pytorch,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2022-12-17

Pytorch使用卷积神经网络对CIFAR10图片进行分类方式

本文详细介绍了使用PyTorch卷积神经网络(CNN)对CIFAR-10图像进行分类的方法。文章包括以下步骤:导入模块和加载数据定义CNN模型架构定义损失函数和优化器训练模型评估模型遵循这些步骤可以构建一个准确的CNN模型来识别CIFAR-10数据集中10类图像。
Pytorch使用卷积神经网络对CIFAR10图片进行分类方式
2024-04-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录