我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python数据科学Matplotlib图库的用法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python数据科学Matplotlib图库的用法

这篇文章主要讲解了“Python数据科学Matplotlib图库的用法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python数据科学Matplotlib图库的用法”吧!

Matplotlib 是 Python 的二维绘图库,用于生成符合出版质量或跨平台交互环境的各类图形。

图形解析与工作流

图形解析 

Python数据科学Matplotlib图库的用法

工作流

Matplotlib 绘图的基本步骤:
1  准备数据

2  创建图形

3 绘图

4 自定义设置

5 保存图形

6 显示图形

import matplotlib.pyplot as pltx = [1,2,3,4] # step1y = [10,20,25,30]fig = plt.figure() # step2ax = fig.add_subplot(111) # step3ax.plot(x, y, color='lightblue', linewidth=3) # step3\4ax.scatter([2,4,6],             [5,15,25],             color='darkgreen',             marker='^')ax.set_xlim(1, 6.5)plt.savefig('foo.png') # step5plt.show() # step6

Python数据科学Matplotlib图库的用法 

准备数据

一维数据

import numpy as np x = np.linspace(0, 10, 100)y = np.cos(x) z = np.sin(x)

二维数据或图片

data = 2 * np.random.random((10, 10))data2 = 3 * np.random.random((10, 10))Y, X = np.mgrid[-3:3:100j, -3:3:100j]U = -1 - X**2 + YV = 1 + X - Y**2from matplotlib.cbook import get_sample_dataimg = np.load('E:/anaconda3/envs/torch/Lib/site-packages/matplotlib/mpl-data/aapl.npz')

绘制图形

import matplotlib.pyplot as plt

画布

fig = plt.figure()fig2 = plt.figure(figsize=plt.figaspect(2.0))

坐标轴

图形是以坐标轴为核心绘制的,大多数情况下,子图就可以满足需求。子图是栅格系统的坐标轴。

fig.add_axes()ax1 = fig.add_subplot(221) # row-col-numax3 = fig.add_subplot(212) fig3, axes = plt.subplots(nrows=2,ncols=2)fig4, axes2 = plt.subplots(ncols=3)

Python数据科学Matplotlib图库的用法

Python数据科学Matplotlib图库的用法

绘图例程

一维数据

fig, ax = plt.subplots()lines = ax.plot(x,y) # 用线或标记连接点ax.scatter(x,y) # 缩放或着色未连接的点axes[0,0].bar([1,2,3],[3,4,5]) # 绘制等宽纵向矩形axes[1,0].barh([0.5,1,2.5],[0,1,2]) # 绘制等高横向矩形axes[1,1].axhline(0.45) # 绘制与轴平行的横线axes[0,1].axvline(0.65) # 绘制与轴垂直的竖线ax.fill(x,y,color='blue') # 绘制填充多边形ax.fill_between(x,y,color='yellow') # 填充y值和0之间

Python数据科学Matplotlib图库的用法

二维数据或图片

import matplotlib.image as imgpltimg = imgplt.imread('C:/Users/Administrator/Desktop/timg.jpg') fig, ax = plt.subplots()im = ax.imshow(img, cmap='gist_earth', interpolation='nearest', vmin=-200, vmax=200)# 色彩表或RGB数组 axes2[0].pcolor(data2) # 二维数组伪彩色图axes2[0].pcolormesh(data) # 二维数组等高线伪彩色图CS = plt.contour(Y,X,U) # 等高线图axes2[2].contourf(data)     axes2[2]= ax.clabel(CS) # 等高线图标签

Python数据科学Matplotlib图库的用法

向量场

axes[0,1].arrow(0,0,0.5,0.5) # 为坐标轴添加箭头axes[1,1].quiver(y,z) # 二维箭头axes[0,1].streamplot(X,Y,U,V) # 二维箭头

数据分布

ax1.hist(y) # 直方图ax3.boxplot(y) # 箱形图ax3.violinplot(z) # 小提琴图

自定义图形 颜色、色条与色彩表

plt.plot(x, x, x, x**2, x, x**3)ax.plot(x, y, alpha = 0.4)ax.plot(x, y, c='k')fig.colorbar(im, orientation='horizontal')im = ax.imshow(img,                                  cmap='seismic')

Python数据科学Matplotlib图库的用法

标记

fig, ax = plt.subplots()ax.scatter(x,y,marker=".")ax.plot(x,y,marker="o")

Python数据科学Matplotlib图库的用法

线型

plt.plot(x,y,linewidth=4.0)plt.plot(x,y,ls='solid') plt.plot(x,y,ls='--')plt.plot(x,y,'--',x**2,y**2,'-.')plt.setp(lines,color='r',linewidth=4.0)

Python数据科学Matplotlib图库的用法

文本与标注

ax.text(1,         -2.1,        'Example Graph',        style='italic')ax.annotate("Sine",            xy=(8, 0),             xycoords='data',            xytext=(10.5, 0),             textcoords='data',            arrowprops=dict(arrow,            connection),)

数学符号

plt.title(r'$sigma_i=15$', fontsize=20)

尺寸限制、图例和布局

尺寸限制与自动调整

ax.margins(x=0.0,y=0.1) # 添加内边距ax.axis('equal') # 将图形纵横比设置为1ax.set(xlim=[0,10.5],ylim=[-1.5,1.5]) # 设置x轴与y轴的限ax.set_xlim(0,10.5)

图例

ax.set(title='An Example Axes',       ylabel='Y-Axis',         xlabel='X-Axis') # 设置标题与x、y轴的标签ax.legend(loc='best') # 自动选择最佳的图例位置

标记

ax.xaxis.set(ticks=range(1,5),            ticklabels=[3,100,-12,"foo"]) # 手动设置X轴刻度ax.tick_params(axis='y',                                     direction='inout',                 length=10) # 设置Y轴长度与方向

子图间距

fig3.subplots_adjust(wspace=0.5,                    hspace=0.3,                    left=0.125,                     right=0.9,                     top=0.9,                     bottom=0.1)fig.tight_layout() # 设置画布的子图布局

坐标轴边线

ax1.spines['top'].set_visible(False) # 隐藏顶部坐标轴线ax1.spines['bottom'].set_position(('outward',10)) # 设置底部边线的位置为outward

保存

#保存画布plt.savefig('foo.png')# 保存透明画布plt.savefig('foo.png', transparent=True)

显示图形

plt.show()

关闭与清除

plt.cla() # 清除坐标轴plt.clf() #  清除画布plt.close() # 关闭窗口

感谢各位的阅读,以上就是“Python数据科学Matplotlib图库的用法”的内容了,经过本文的学习后,相信大家对Python数据科学Matplotlib图库的用法这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python数据科学Matplotlib图库的用法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python数据科学Matplotlib图库的用法

这篇文章主要讲解了“Python数据科学Matplotlib图库的用法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python数据科学Matplotlib图库的用法”吧!Matplotli
2023-06-20

Python 数据科学 Matplotlib图库详解

Matplotlib 是 Python 的二维绘图库,用于生成符合出版质量或跨平台交互环境的各类图形。 图形解析与工作流 图形解析 工作流 Matplotlib 绘图的基本步骤: 1 准备数据 2 创建图形 3 绘图 4 自定义设置 5
2022-06-02

有哪些实用的数据科学Python库

这篇文章主要介绍了有哪些实用的数据科学Python库的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇有哪些实用的数据科学Python库文章都会有所收获,下面我们一起来看看吧。一、Wget从网络上提取数据是数据科学
2023-07-06

Python绘图库Matplotlib的基本用法

一、前言 Matplotlib是Python的绘图库,不仅具备强大的绘图功能,还能够在很多平台上使用,和Jupyter Notebook有极强的兼容性。 二、线型图import matplotlib.pyplot as plt import
2022-06-02

常用数据科学Python库有哪些

本篇内容介绍了“常用数据科学Python库有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!PandasPandas库[3]对于致力于探索
2023-06-15

实用的数据科学Python库有什么功能

本篇内容介绍了“实用的数据科学Python库有什么功能”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!1. 获取数据获取数据是解决数据科学问题
2023-06-16

python科学计算常用的数学科学计算库是什么

这篇文章给大家分享的是有关python科学计算常用的数学科学计算库是什么的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。python的五大特点是什么python的五大特点:1.简单易学,开发程序时,专注的是解决问题
2023-06-14

Python连接数据库怎么使用matplotlib画柱形图

本篇内容主要讲解“Python连接数据库怎么使用matplotlib画柱形图”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python连接数据库怎么使用matplotlib画柱形图”吧!一、柱形
2023-07-02

怎么使用Python的Matplotlib库绘图

这篇“怎么使用Python的Matplotlib库绘图”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“怎么使用Python的M
2023-07-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录