分析“深度学习”市场发展趋向
马六甲海峡
2024-04-23 22:56
欢迎各位阅读本篇,深度学习的概念源于 人工神经网络的研究。含多隐层的 多层感知器就是一种深度学习结构。本篇文章讲述了分析“深度学习”市场发展趋向,编程学习网教育平台提醒各位:本篇文章纯干货~因此大家一定要认真阅读本篇文章哦!
行业分析
2016年,全球深度学习市场规模据估计已达到2.27亿美元。随着在自动驾驶和医疗健康产业的应用越来越多,深度学习应该仍会对行业增长带来突出的贡献。它在技术上克服数据量、强计算力以及在数据存储能力方面的优势,使得其在语音、图像等对数据复杂性要求很高的领域中异军突起,提供了巨大的研究空间和价值。
各行各业日益增长的大量数据也在引领着行业发展,另外,对人机交互的巨大需求也为各类解决方案提供商提供了开发方案和功能的新途径。然而, 训练神经网络所需的数据对行业增长来讲却是一个挑战。
各大公司都在深度学习技术与产品结合方面大力投入。2016年11月,SK电信宣布他们和Intel合作,开发基于深度学习的V2X和视频识别技术。此外,政府对此领域的扶持和预算增加也将会促进未来几年行业内的增长。例如,中国国家发改委就出资大力支持深度学习研究实验室的发展。
解决方案分析
目前深度学习领域的发展主要集中在软件层面,通过基于深度学习以及机器学习技术的SaaS,已经给整个行业带来颠覆式的转变。这些解决方案不仅仅是数据的组织和集合,更能从中提取大量有用的信息来做预测和判断。
另一方面,算法和硬件的发展还有很长一段路要走,为此也推动着芯片的发展。在日益增长的需求下,FPGA和专用集成电路(ASIC)也在快速更新,以满足客户的需求。
硬件分析
在2016年里,GPU霸占了硬件区域,性能比其他芯片快很多。越来越多的增强图形内容的需求引发了深度学习应用使用GPU的需求。
另一方面,大公司增加使用GPU做研发也会增加GPU的需求。比如,谷歌宣布了2017年早期会在云机器学习和运算引擎里添加GPU,提高大量运算任务的性能。GPU正见证着用神经网络训练深度学习模型带来的巨大发展。
FPGA在16年刚刚踏进深度学习领域时,只占有小量的收入。但是,大家都普遍看好它会有更大的发展,有能力达到比GPU还高的效率。现在FGPA还属于新生期,但我们期望它会成为这个领域的重要玩家。
行业应用分析
2016年,图像识别在行业里获得了巨大的关注,收入超过了总份额的40%。这个技术最广泛的应用是Facebook的人脸识别功能。它在非结构化数据的模式识别领域也应用广泛,例如语音,文字,图象和视频等。
另外在未来8年,医疗和安防领域的图像识别应用也会快速推动行业的发展。汽车和金融行业也会不断转型,来和高新技术不断磨合,用技术进一步提高运营能力并且和技术转化落地的能力,为业务和用户带来更多的价值。
数据挖掘技术在2016年在市场拥有5%的占有率。对于模式识别和有效预测的数据分割预测,是促使这项技术增长的主要驱动力。 用数据挖掘技术去做决策和推断正在为大数据分析领域带来颠覆式的变革。
终端应用分析
深度学习在航空航天和国防上的收入占到了2016年市场总收入的20%,主要来自于在远程传感、物体检测和定位、光谱分析、识别网络异常以及恶意代码检测上的应用。另外,随着驾驶舱到步兵团逐渐开始引入可穿戴计算,对于通用型GPU的的需要激增。
航空航天和国防正在利用深度学习技术,通过运行着大量数据的嵌入式平台来应对防御上的挑战。通过图像处理和数据挖掘技术,这些解决方案能够预测和评估未来的行动路线。例如,美国国土安全局就使用深度学习技术在他的综合环境分析和模拟项目中来进行未来可能发生的事件的评估。
汽车产业在整个去年深度学习产业收入上的占比也很显著。这是由于如今汽车产业正在由过去的私人所有制向共享经济转型。汽车制造商开始意识到,自动驾驶汽车的意义,并且都开始将深度学习纳入到自己的生态系统中。奥迪在它与摄像机有关的技术中使用了深度学习算法,以此来通过特征和形状来识别交通标志。
地区分析
由于在人工智能和神经网络方面投资的增加,在2016年的总收入中,北美市场的收入份额占比超过了45%。在可预期的一段时间内,这种增势还将会持续发生。北美市场对前沿科技的接受程度非常之高,这也使得地区内的企业对深度学习技术的采用也处在一个高速过程中。
另一方面,政府越来越多的支持也刺激了这个领域的发展。美国联邦政府已经建立了人工智能和机器学习的专业委员会,这也使得行业发展迅速。
欧洲对于人工智能的重视也在不断的加强,这使得深度学习产业的增长空间也进一步扩大。尤其是在英国,自动驾驶、智能设备以及网络安全都在促使整个行业不断发展。
竞争分析
目前市场上的主要玩家包括:Nvidia、Intel、Google、微软。这些玩家目前正在通过不断的并购来不断扩展自己在研发以及市场份额争夺上的优势。2016年8月,英特尔收购了Nervana,以此来获取它的硬件芯片平台。
与此同时,很多公司也在不断加大投入,希望能在自己的产品中加入深度学习的能力。2016年11月,GE医疗宣布和加州大学旧金山分析合作开发深度学习算法库,以此来促进内科医生在诊断和治疗病人上的效率和准确率。
深度学习:
转折点
2006年前,尝试训练深度架构都失败了:训练一个深度有监督前馈神经网络趋向于产生坏的结果(同时在训练和测试误差中),然后将其变浅为1(1或者2个隐层)。
2006年的3篇论文改变了这种状况,由Hinton的革命性的在深度信念网(Deep Belief Networks, DBNs)上的工作所引领:
Hinton, G. E., Osindero, S. and Teh, Y.,A fast learning algorithm for deep belief nets.Neural Computation 18:1527-1554, 2006
Yoshua Bengio, Pascal Lamblin, Dan Popovici and Hugo Larochelle,Greedy LayerWise Training of Deep Networks, in J. Platt et al. (Eds), Advances in Neural Information Processing Systems 19 (NIPS 2006), pp. 153-160, MIT Press, 2007
Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra and Yann LeCun Efficient Learning of Sparse Representations with an Energy-Based Model, in J. Platt et al. (Eds), Advances in Neural Information Processing Systems (NIPS 2006), MIT Press, 2007
在这三篇论文中以下主要原理被发现:
表示的无监督学习被用于(预)训练每一层;
在一个时间里的一个层次的无监督训练,接着之前训练的层次。在每一层学习到的表示作为下一层的输入;
用有监督训练来调整所有层(加上一个或者更多的用于产生预测的附加层);
DBNs在每一层中利用用于表示的无监督学习RBMs。Bengio et al paper 探讨和对比了RBMs和auto-encoders(通过一个表示的瓶颈内在层预测输入的神经网络)。Ranzato et al paper在一个convolutional架构的上下文中使用稀疏auto-encoders(类似于稀疏编码)。Auto-encoders和convolutional架构将在以后的课程中讲解。
从2006年以来,大量的关于深度学习的论文被发表。
小结:相信最后大家阅读完毕本篇文章,肯定学到了不少知识吧?其实大家私下还得多多自学,当然如果大家还想了解更多方面的详细内容的话呢,不妨关注编程学习网教育平台,在这个学习知识的天堂中,您肯定会有意想不到的收获的!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341