我的编程空间,编程开发者的网络收藏夹
学习永远不晚

基于Matlab怎么实现野狗优化算法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

基于Matlab怎么实现野狗优化算法

本篇内容介绍了“基于Matlab怎么实现野狗优化算法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

1.概述

基于Matlab怎么实现野狗优化算法

野狗优化算法(Dingo Optimization Algorithm, DOA)模仿澳大利亚野狗的社交行为。DOA算法的灵感来源于野狗的狩猎策略,即迫害攻击、分组策略和食腐行为。为了提高该方法的整体效率和性能,在DOA中制定了三种与四条规则相关联的搜索策略,这些策略和规则在搜索空间的强化(开发)和多样化(探索)之间提供了一种精确的平衡。

该算法的优点:寻优能力强,收敛速度快等特点。

2.捕食过程的数学模型

基于Matlab怎么实现野狗优化算法

2.1 种群初始化

野狗种群在搜索边界内随机初始化:

基于Matlab怎么实现野狗优化算法

其中,lbi和ubi分别表示个体的上下边界,randi是[0,1]之间的随机数。

2.2 群体攻击过程

基于Matlab怎么实现野狗优化算法

捕食者通常使用高度智能的狩猎技术,野狗通常单独捕食小猎物,如兔子,但当捕食大猎物,如袋鼠时,它们会成群结队。野狗能找到猎物的位置并将其包围,其行为如上所示:

其中,t代表当前的迭代次数,基于Matlab怎么实现野狗优化算法是野狗新位置; na是在[2,SizePop/2]的逆序中生成的随机整数,其中SizePop是野狗种群的规模; 基于Matlab怎么实现野狗优化算法是将攻击的野狗的子集,其中基于Matlab怎么实现野狗优化算法是随机生成的野狗种群;基于Matlab怎么实现野狗优化算法是当前野狗的位置基于Matlab怎么实现野狗优化算法是上一次迭代中发现的最佳野狗;β1是在[-2.2]内均匀生成的随机数,它是一个比例因子,可改变野狗轨迹的大小。

2.3 迫害攻击过程

野狗通常捕猎小猎物,直到单独捕获为止。行为模拟为:

基于Matlab怎么实现野狗优化算法

其中,基于Matlab怎么实现野狗优化算法是野狗新位置,基于Matlab怎么实现野狗优化算法是上一次迭代中发现的最佳野狗,β2的值与式2.2中的值相同,β2是在[-1,1]区间内均匀生成的随机数,r1是在从1到最大搜索代理(野狗)大小的区间内生成的随机数,基于Matlab怎么实现野狗优化算法是随机选择的第r1个野狗,其中i≠r1。

2.4 野狗的存活率

在DOA中,野狗的存活率值由下式给出:

基于Matlab怎么实现野狗优化算法

其中,fitnessmax和fitnessmin分别是当前一代中最差和最佳的适应度值,而fitness(i)是第i个野狗的当前适应度值。式(5)中的生存向量包含[0,1]区间内的归一化适应度。

3.Matlab代码实现

3.1 代码

%====欢迎关注公众号:电力系统与算法之美==== function DOA() %% ====参数设置==== popsize=20;    % 种群规模Iteration=1000;     % 迭代次数lb = -10;     % 各维度的下限ub = 10;  % 各维度的上限dim = 2;  % 优化变量的个数 P= 0.5;  % Hunting or Scavenger  rate. Q= 0.7;  % Group attack or persecution?beta1= -2 + 4* rand();  % -2 < beta < 2     beta2= -1 + 2* rand();  % -1 < beta2 < 1    naIni= 2; % minimum number of dingoes that will attacknaEnd= popsize /naIni; % maximum number of dingoes that will attackna= round(naIni + (naEnd-naIni) * rand()); % number of dingoes that will attack %% ====初始化种群位置=====Positions=lb + (ub - lb).*rand(popsize, dim);for i=1:size(Positions,1)    Fitness(i)=sum(Positions(i,:).^2); % get fitnessend[best_score, minIdx]= min(Fitness);  % the min fitness value vMin and the position minIdxbest_x= Positions(minIdx,:);  % the best vector[worst_score, ~]= max(Fitness); % the max fitness value vMax and the position maxIdxcurve=zeros(1,Iteration); %% Section 2.2.4 Dingoes'survival rates for i=1:size(Fitness,2)    survival(i)= (worst_score-Fitness(i))/(worst_score - best_score);end  %% =====开始循环===========for t=1:Iteration    for r=1:popsize        if rand() < P  % Hunting            sumatory=0;             c=1;            vAttack=[];            while(c<=na)                idx =round( 1+ (popsize-1) * rand());                 band= 0;                for i=1:size(vAttack, 2)                    if idx== vAttack(i)                        band=1;                        break;                    end                 end                 if ~band                    vAttack(c) = idx;                    c=c+1;                end            end             for j=1:size(vAttack,2)                sumatory= sumatory + Positions(vAttack(j),:)- Positions(r,:);            end            sumatory=sumatory/na;             if rand() < Q  % group attack                v(r,:)=  beta1 * sumatory-best_x; % Strategy 1: Eq.2            else  %  Persecution                r1= round(1+ (popsize-1)* rand()); %                v(r,:)= best_x + beta1*(exp(beta2))*((Positions(r1,:)-Positions(r,:))); %             end        else % Scavenger            r1= round(1+ (popsize-1)* rand());            if rand() < 0.5                val= 0;            else                val=1;            end             v(r,:)=   (exp(beta2)* Positions(r1,:)-((-1)^val)*Positions(r,:))/2; %         end        if survival(r) <= 0.3  % Section 2.2.4, Algorithm 3 - Survival procedure            band=1;            while band                r1= round(1+ (popsize-1)* rand());                r2= round(1+ (popsize-1)* rand());                if r1 ~= r2                    band=0;                end            end            if rand() < 0.5                val= 0;            else                val=1;            end            v(r,:)=   best_x + (Positions(r1,:)-((-1)^val)*Positions(r2,:))/2;  % Section 2.2.4, Strategy 4: Eq.6        end        % Return back the search agents that go beyond the boundaries of the search space .        Flag4ub=v(r,:)>ub;        Flag4lb=v(r,:)<lb;        v(r,:)=(v(r,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;        % Evaluate new solutions        Fnew= sum(v(r,:).^2);        % Update if the solution improves        if Fnew <= Fitness(r)            Positions(r,:)= v(r,:);            Fitness(r)= Fnew;        end        if Fnew <= best_score            best_x= v(r,:);            best_score= Fnew;        end    end    curve(t)= best_score;    [worst_score, ~]= max(Fitness);    for i=1:size(Fitness,2)        survival(i)= (worst_score-Fitness(i))/(worst_score - best_score);    end end  %======结束优化=============== %% 进化曲线figuresemilogy(curve,'Color','r','LineWidth',2)grid ontitle('收敛曲线')xlabel('迭代次数');ylabel('最佳适应度');axis tightlegend('DOA')  display(['最优解: ', num2str(best_x)]);display(['最小值: ', num2str(best_score)]); end

3.2 结果

基于Matlab怎么实现野狗优化算法

“基于Matlab怎么实现野狗优化算法”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

基于Matlab怎么实现野狗优化算法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

基于Matlab怎么实现野狗优化算法

本篇内容介绍了“基于Matlab怎么实现野狗优化算法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!1.概述野狗优化算法(Dingo Opti
2023-06-30

基于Matlab怎么实现鲸鱼优化算法

这篇文章主要介绍“基于Matlab怎么实现鲸鱼优化算法”,在日常操作中,相信很多人在基于Matlab怎么实现鲸鱼优化算法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”基于Matlab怎么实现鲸鱼优化算法”的疑
2023-06-30

Matlab如何实现黑洞优化算法

这篇文章主要介绍“Matlab如何实现黑洞优化算法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Matlab如何实现黑洞优化算法”文章能帮助大家解决问题。1.概述1.1黑洞算法根据黑洞现象原理首次提
2023-07-02

Python&Matlab如何实现灰狼优化算法

这篇文章给大家分享的是有关Python&Matlab如何实现灰狼优化算法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。1 灰狼优化算法基本思想灰狼优化算法是一种群智能优化算法,它的独特之处在于一小部分拥有绝对话语
2023-06-29

基于Go语言实现选择排序算法及优化

选择排序是一种简单的比较排序算法.这篇文章将利用Go语言实现冒泡排序算法,文中的示例代码讲解详细,对学习Go语言有一定的帮助,需要的可以参考一下
2022-12-09

MATLAB中Floyed算法怎么实现

Floyd算法用于解决图中任意两点之间的最短路径问题。在MATLAB中,可以使用以下代码实现Floyd算法:matlabfunction dist = floyd(adjMatrix)n = size(adjMatrix, 1);dist
2023-10-19

matlab遗传算法怎么实现

要实现遗传算法(Genetic Algorithm)的MATLAB代码,可以按照以下步骤进行:初始化种群:生成包含若干个个体(染色体)的初始种群,每个个体都是一个基因序列,一般用二进制编码表示。适应度评价:根据问题的具体情况,定义适应度函数
2023-10-22

matlab神经网络算法怎么实现

在MATLAB中,可以使用神经网络工具箱来实现神经网络算法。以下是一个简单的例子,展示了如何使用MATLAB实现一个简单的前馈神经网络:1. 导入数据:首先,将您的训练数据导入MATLAB工作区。通常,训练数据应该包括输入特征矩阵X和目标输
2023-10-12

基于C++怎么实现柏林噪声算法

本篇内容主要讲解“基于C++怎么实现柏林噪声算法”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“基于C++怎么实现柏林噪声算法”吧!概述引述维基百科的介绍:Perlin噪声(Perlin nois
2023-07-05

java遗传算法路径优化怎么实现

要实现Java遗传算法路径优化,您可以按照以下步骤进行:定义遗传算法的基本元素:染色体、个体、种群等。染色体表示一条路径,个体表示染色体的具体实例,种群表示多个个体的集合。设计适应度函数:适应度函数用于评估个体的优劣,即路径的长度。路径的长
2023-10-22

怎么利用Matlab实现迭代适应点算法

本篇内容主要讲解“怎么利用Matlab实现迭代适应点算法”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么利用Matlab实现迭代适应点算法”吧!道格拉斯-普克算法(Douglas–
2023-06-29

C++怎么实现基于不相交集合的kruskal算法

这篇文章主要介绍“C++怎么实现基于不相交集合的kruskal算法”,在日常操作中,相信很多人在C++怎么实现基于不相交集合的kruskal算法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C++怎么实现基于
2023-07-05

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录