python使用mediapiple+opencv识别视频人脸的实现
短信预约 -IT技能 免费直播动态提醒
1、安装
pip install mediapipe
2、代码实现
# -*- coding: utf-8 -*-
"""
@Time : 2022/3/18 14:43
@Author : liwei
@Description:
"""
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
mp_face_detection = mp.solutions.face_detection
# 绘制人脸画像的点和线的大小粗细及颜色(默认为白色)
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
cap = cv2.VideoCapture("E:\\video\\test\\test.mp4")# , cv2.CAP_DSHOW
# For webcam input:
# cap = cv2.VideoCapture(0)
with mp_face_detection.FaceDetection(
model_selection=0, min_detection_confidence=0.5) as face_detection:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
break
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = face_detection.process(image)
# Draw the face detection annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.detections:
box = results.detections[0].location_data.relative_bounding_box
xmin = box.xmin
ymin = box.ymin
width = box.width
height = box.height
xmax = box.xmin + width
ymax = ymin + height
cv2.rectangle(image, (int(xmin * image.shape[1]),int(ymin* image.shape[0])), (int(xmax* image.shape[1]), int(ymax* image.shape[0])), (0, 0, 255), 2)
# for detection in results.detections:
# mp_drawing.draw_detection(image, detection)
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Face Detection', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
效果
3、更新 mediapiple+threadpool+opencv实现图片人脸采集效率高于dlib
# -*- coding: utf-8 -*-
"""
@Time : 2022/3/23 13:43
@Author : liwei
@Description:
"""
import cv2 as cv
import mediapipe as mp
import os
import threadpool
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
mp_face_detection = mp.solutions.face_detection
savePath = "E:\\saveImg\\"
basePath = "E:\\img\\clear\\20220301\\"
def cut_face_img(file):
# print(basePath + file)
img = cv.imread(basePath + file)
with mp_face_detection.FaceDetection(
model_selection=0, min_detection_confidence=0.5) as face_detection:
img.flags.writeable = False
image = cv.cvtColor(img, cv.COLOR_RGB2BGR)
results = face_detection.process(image)
image = cv.cvtColor(image, cv.COLOR_RGB2BGR)
image.flags.writeable = True
if results.detections:
box = results.detections[0].location_data.relative_bounding_box
xmin = box.xmin
ymin = box.ymin
width = box.width
height = box.height
xmax = box.xmin + width
ymax = ymin + height
x1, x2, y1, y2 = int(xmax * image.shape[1]), int(xmin * image.shape[1]), int(
ymax * image.shape[0]), int(ymin * image.shape[0])
cropped = image[y2:y1, x2:x1]
if cropped.shape[1] > 200:
cv.imwrite(savePath + file, cropped)
print(savePath + file)
if __name__ == '__main__':
data = os.listdir(basePath)
pool = threadpool.ThreadPool(3)
requests = threadpool.makeRequests(cut_face_img, data)
[pool.putRequest(req) for req in requests]
pool.wait()
到此这篇关于python使用mediapiple+opencv识别视频人脸的实现的文章就介绍到这了,更多相关mediapiple opencv识别视频人脸内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341