我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Spark SQL数据加载和保存的实例分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Spark SQL数据加载和保存的实例分析

今天就跟大家聊聊有关Spark SQL数据加载和保存的实例分析,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

一、前置知识详解 Spark SQL重要是操作DataFrame,DataFrame本身提供了save和load的操作, Load:可以创建DataFrame, Save:把DataFrame中的数据保存到文件或者说与具体的格式来指明我们要读取的文件的类型以及与具体的格式来指出我们要输出的文件是什么类型。

二、Spark SQL读写数据代码实战

import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.sql.*;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructField;import org.apache.spark.sql.types.StructType;import java.util.ArrayList;import java.util.List;public class SparkSQLLoadSaveOps { public static void main(String[] args) {  SparkConf conf = new SparkConf().setMaster("local").setAppName("SparkSQLLoadSaveOps");  JavaSparkContext sc = new JavaSparkContext(conf);  SQLContext = new SQLContext(sc);    DataFrame peopleDF = sqlContext.read().format("json").load("E:\\Spark\\Sparkinstanll_package\\Big_Data_Software\\spark-1.6.0-bin-hadoop2.6\\examples\\class="lazy" data-src\\main\\resources\\people.json");    //通过mode来指定输出文件的是append。创建新文件来追加文件 peopleDF.select("name").write().mode(SaveMode.Append).save("E:\\personNames"); }}

读取过程源码分析如下: 1. read方法返回DataFrameReader,用于读取数据。

@Experimental//创建DataFrameReader实例,获得了DataFrameReader引用def read: DataFrameReader = new DataFrameReader(this)

2. 然后再调用DataFrameReader类中的format,指出读取文件的格式。

def format(source: String): DataFrameReader = { this.source = source this}

3. 通过DtaFrameReader中load方法通过路径把传入过来的输入变成DataFrame。

// TODO: Remove this one in Spark 2.0.def load(path: String): DataFrame = { option("path", path).load()}

至此,数据的读取工作就完成了,下面就对DataFrame进行操作。 下面就是写操作!!!

1. 调用DataFrame中select函数进行对列筛选

@scala.annotation.varargsdef select(col: String, cols: String*): DataFrame = select((col +: cols).map(Column(_)) : _*)

2. 然后通过write将结果写入到外部存储系统中。

@Experimentaldef write: DataFrameWriter = new DataFrameWriter(this)

3. 在保持文件的时候mode指定追加文件的方式

def mode(saveMode: SaveMode): DataFrameWriter = { this.mode = saveMode this}

4. 最后,save()方法触发action,将文件输出到指定文件中。

def save(path: String): Unit = { this.extraOptions += ("path" -> path) save()}

三、Spark SQL读写整个流程图如下

四、对于流程中部分函数源码详解

DataFrameReader.Load()

1. Load()返回DataFrame类型的数据集合,使用的数据是从默认的路径读取。

@deprecated("Use read.load(path). This will be removed in Spark 2.0.", "1.4.0")def load(path: String): DataFrame = {//此时的read就是DataFrameReader read.load(path)}

2. 追踪load源码进去,源码如下:在DataFrameReader中的方法。Load()通过路径把输入传进来变成一个DataFrame。

// TODO: Remove this one in Spark 2.0.def load(path: String): DataFrame = { option("path", path).load()}

3. 追踪load源码如下:

def load(): DataFrame = {//对传入的Source进行解析 val resolved = ResolvedDataSource(  sqlContext,  userSpecifiedSchema = userSpecifiedSchema,  partitionColumns = Array.empty[String],  provider = source,  options = extraOptions.toMap) DataFrame(sqlContext, LogicalRelation(resolved.relation))}

DataFrameReader.format()

1. Format:具体指定文件格式,这就获得一个巨大的启示是:如果是Json文件格式可以保持为Parquet等此类操作。 Spark SQL在读取文件的时候可以指定读取文件的类型。例如,Json,Parquet.

def format(source: String): DataFrameReader = { this.source = source //FileType this}

DataFrame.write()

1. 创建DataFrameWriter实例

@Experimentaldef write: DataFrameWriter = new DataFrameWriter(this)1

2. 追踪DataFrameWriter源码如下:以DataFrame的方式向外部存储系统中写入数据。

@Experimentalfinal class DataFrameWriter private[sql](df: DataFrame) {

DataFrameWriter.mode()

1. Overwrite是覆盖,之前写的数据全都被覆盖了。 Append:是追加,对于普通文件是在一个文件中进行追加,但是对于parquet格式的文件则创建新的文件进行追加。

def mode(saveMode: SaveMode): DataFrameWriter = { this.mode = saveMode this}

2. 通过模式匹配接收外部参数

def mode(saveMode: String): DataFrameWriter = { this.mode = saveMode.toLowerCase match {  case "overwrite" => SaveMode.Overwrite  case "append" => SaveMode.Append  case "ignore" => SaveMode.Ignore  case "error" | "default" => SaveMode.ErrorIfExists  case _ => throw new IllegalArgumentException(s"Unknown save mode: $saveMode. " +   "Accepted modes are 'overwrite', 'append', 'ignore', 'error'.") } this}

DataFrameWriter.save()

1. save将结果保存传入的路径。

def save(path: String): Unit = { this.extraOptions += ("path" -> path) save()}

2. 追踪save方法。

def save(): Unit = { ResolvedDataSource(  df.sqlContext,  source,  partitioningColumns.map(_.toArray).getOrElse(Array.empty[String]),  mode,  extraOptions.toMap,  df)}

3. 其中source是SQLConf的defaultDataSourceNameprivate var source: String = df.sqlContext.conf.defaultDataSourceName其中DEFAULT_DATA_SOURCE_NAME默认参数是parquet。

// This is used to set the default data sourceval DEFAULT_DATA_SOURCE_NAME = stringConf("spark.sql.sources.default", defaultValue = Some("org.apache.spark.sql.parquet"), doc = "The default data source to use in input/output.")

DataFrame.scala中部分函数详解:

1. toDF函数是将RDD转换成DataFrame

// This is declared with parentheses to prevent the Scala compiler from treating// `rdd.toDF("1")` as invoking this toDF and then apply on the returned DataFrame.def toDF(): DataFrame = this

2. show()方法:将结果显示出来

// scalastyle:off printlndef show(numRows: Int, truncate: Boolean): Unit = println(showString(numRows, truncate))// scalastyle:on println

追踪showString源码如下:showString中触发action收集数据。

private[sql] def showString(_numRows: Int, truncate: Boolean = true): String = { val numRows = _numRows.max(0) val sb = new StringBuilder val takeResult = take(numRows + 1) val hasMoreData = takeResult.length > numRows val data = takeResult.take(numRows) val numCols = schema.fieldNames.length

看完上述内容,你们对Spark SQL数据加载和保存的实例分析有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Spark SQL数据加载和保存的实例分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Spark中的数据读取保存和累加器实例详解

这篇文章主要为大家介绍了Spark中的数据读取保存和累加器实例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-11-13

Spark Streaming+Spark SQL的数据倾斜示例分析

这篇文章将为大家详细讲解有关Spark Streaming+Spark SQL的数据倾斜示例分析,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。1.现象 三台机器都有产生executor,每台
2023-06-03

Python下载商品数据并连接数据库且保存数据的示例分析

这篇文章主要介绍了Python下载商品数据并连接数据库且保存数据的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。前言:开发环境:python 3.8pycharm 2
2023-06-29

C++的数据共享与保护实例分析

这篇文章主要讲解了“C++的数据共享与保护实例分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++的数据共享与保护实例分析”吧!1.作用域作用域是一个标识符在程序正文中有效的区域作用域关
2023-06-29

Android异步加载数据和图片的保存思路详解

把从网络获取的图片数据保存在SD卡上,先把权限都加上网络权限 android.permission.INTERNETSD卡读写权限android.permission.MOUNT_UNMOUNT_FILESYSTEMS android.pe
2022-06-06

Android中的类文件和类加载器实例分析

本篇内容介绍了“Android中的类文件和类加载器实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、Java中的类加载器首先花点时间
2023-06-30

SQL Server中的XML数据类型实例分析

本篇内容主要讲解“SQL Server中的XML数据类型实例分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“SQL Server中的XML数据类型实例分析”吧!SQL Server从2005起
2023-06-30

MySQL数据库的触发器和存储过程实例分析

这篇文章主要介绍“MySQL数据库的触发器和存储过程实例分析”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“MySQL数据库的触发器和存储过程实例分析”文章能帮助大家解决问题。一、实验目的1、掌握某主
2023-07-02

JVM的类加载器和双亲委派模式实例分析

这篇文章主要讲解了“JVM的类加载器和双亲委派模式实例分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“JVM的类加载器和双亲委派模式实例分析”吧!类加载器Java虚拟机设计团队有意把类加载
2023-06-29

MySQL数据库千万级数据查询和存储的示例分析

这篇文章主要介绍MySQL数据库千万级数据查询和存储的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!百万级数据处理方案数据存储结构设计表字段设计表字段 not null,因为 null 值很难查询优化且占用额
2023-06-15

编程热搜

目录