我的编程空间,编程开发者的网络收藏夹
学习永远不晚

利用Python自制网页并实现一键自动生成探索性数据分析报告

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

利用Python自制网页并实现一键自动生成探索性数据分析报告

前言

今天小编带领大家用Python自制一个自动生成探索性数据分析报告这样的一个工具,大家只需要在浏览器中输入url便可以轻松的访问,如下所示:

第一步

首先我们导入所要用到的模块,设置网页的标题、工具栏以及logo的导入,代码如下:

from st_aggrid import AgGrid
import streamlit as st
import pandas as pd
import pandas_profiling
from streamlit_pandas_profiling import st_profile_report
from pandas_profiling import ProfileReport
from  PIL import Image

st.set_page_config(layout='wide') #Choose wide mode as the default setting

#Add a logo (optional) in the sidebar
logo = Image.open(r'wechat_logo.jpg')
st.sidebar.image(logo,  width=120)

#Add the expander to provide some information about the app
with st.sidebar.expander("关于这个项目"):
     st.write("""
        该项目是将streamlit和pandas_profiling相结合,在您上传数据集之后自动生成相关的数据分析报告,当然该项目提供了两种模式 全量分析还是部分少量分析,这里推荐用部分少量分析,因为计算量更少,所需要的时间更短,效率更高
     """)

#Add an app title. Use css to style the title
st.markdown(""" <style> .font {
    font-size:30px ; font-family: 'Cooper Black'; color: #FF9633;}
    </style> """, unsafe_allow_html=True)
st.markdown('<p class="font">请上传您的数据集,该应用会自动生成相关的数据分析报告</p>', unsafe_allow_html=True)

output:

上传文件以及变量的筛选

紧接的是我们需要上传csv文件,代码如下:

uploaded_file = st.file_uploader("请上传您的csv文件: ", type=['csv'])

我们可以选择针对数据集当中所有的特征进行一个统计分析,或者只是针对部分的变量来一个数据分析,

代码如下:

if uploaded_file is not None:
     df = pd.read_csv(uploaded_file)
     option1 = st.sidebar.radio(
          '您希望您的数据分析报告中包含哪些变量呢',
          ('所有变量', '部分变量'))
 
     if option1 == '所有变量':
          df = df
     elif option1 == '部分变量':
          var_list = list(df.columns)

要是用户勾选的是部分变量,只是针对部分变量来进行一个分析的话,就会弹出来一个多选框来供用户选择,

代码如下:

var_list = list(df.columns)
option3 = st.sidebar.multiselect(
     '筛选出您希望在数据分析报告中包含的变量',
     var_list)
df = df[option3]

用户可以挑选到底是“简单分析”或者是“完整分析”,要是勾选的是“完整分析”的话,会跳出相应的提示,提示“完整分析”由于涉及到更加复杂的计算操作,耗时更加地长,要是遇到大型的数据集,还会有计算失败的情况出现

option2 = st.sidebar.selectbox(
      '筛选模式,完整分析还是简单分析',
      ('简单分析', '完整分析'))

 if option2 == '完整分析':
      mode = 'complete'
      st.sidebar.warning(
           '完整分析由于涉及到更加复杂的计算操作,耗时更加地长,要是遇到大型的数据集,还会有计算失败的情况出现,这里推荐使用简单分析')
 elif option2 == '简单分析':
      mode = 'minimal'
      grid_response = AgGrid(
           df,
           editable=True,
           height=300,
           width='100%',
      )

      updated = grid_response['data']
      df1 = pd.DataFrame(updated)

当用户点击“生成报告”的时候就会自动生成一份完整的数据分析报告了,代码如下:

if st.button('生成报告'):
        if mode=='complete':
            profile=ProfileReport(df,
                title="User uploaded table",
                progress_bar=True,
                dataset={

                })
            st_profile_report(profile)
        elif mode=='minimal':
            profile=ProfileReport(df1,
                minimal=True,
                title="User uploaded table",
                progress_bar=True,
                dataset={
                   
                })
            st_profile_report(profile)

最后出来的结果如下:

到此这篇关于利用Python自制了网页并实现一键自动生成探索性数据分析报告的文章就介绍到这了,更多相关 Python自制网页内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

利用Python自制网页并实现一键自动生成探索性数据分析报告

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录