我的编程空间,编程开发者的网络收藏夹
学习永远不晚

PyTorch基础之torch.nn.Conv2d中自定义权重问题

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

PyTorch基础之torch.nn.Conv2d中自定义权重问题

torch.nn.Conv2d中自定义权重

torch.nn.Conv2d函数调用后会自动初始化weight和bias,本文主要涉及

如何自定义weight和bias为需要的数均分布类型:

torch.nn.Conv2d.weight.data以及torch.nn.Conv2d.bias.data为torch.tensor类型,因此只要对这两个属性进行操作即可。

【sample】

以input_channels = 2, output_channels = 1 为例

In [1]: import torch
In [2]: import torch.nn as nn

In [3]: conv = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=3)

# 此时weight以及bias已由nn.Conv2d初始化
conv.weight, conv.bias
Out[4]: 
(Parameter containing:
 tensor([[[[-0.0335,  0.0855, -0.0708],
           [-0.1672,  0.0902, -0.0077],
           [-0.0838, -0.1539, -0.0933]],
 
          [[-0.0496,  0.1807, -0.1477],
           [ 0.0397,  0.1963,  0.0932],
           [-0.2018, -0.0436,  0.1971]]]], requires_grad=True),
 Parameter containing:
 tensor([-0.1963], requires_grad=True))

# 手动设定
# conv.weight.data 以及 conv.bias.data属性为torch.tensor
# 因此只要获取conv.weight.data以及conv.bias.data属性,后续调用torch.tensor的不同方法即可进行修改
# 例如:全部修改为0
In [5]: conv.weight.data.zero_(), conv.bias.data.zero_()

In [6]: conv.weight, conv.bias
Out[6]: 
(Parameter containing:
 tensor([[[[0., 0., 0.],
           [0., 0., 0.],
           [0., 0., 0.]],
 
          [[0., 0., 0.],
           [0., 0., 0.],
           [0., 0., 0.]]]], requires_grad=True),
 Parameter containing:
 tensor([0.], requires_grad=True))

torch.nn.Conv2d()用法讲解

本文是深度学习框架 pytorch 的API : torch.nn.Conv2d() 函数的用法。介绍了 torch.nn.Conv2d() 各个参数的含义和用法,学会使用 pytorch 创建 卷积神经网络。

用法

Conv2d(in_channels, out_channels, kernel_size, stride=1,padding=0, dilation=1, groups=1,bias=True, padding_mode=‘zeros')

参数

  • in_channels:输入的通道数目 【必选】
  • out_channels:输出的通道数目 【必选】
  • kernel_size:卷积核的大小,类型为int 或者元组,当卷积是方形的时候,只需要一个整数边长即可,卷积不是方形,要输入一个元组表示 高和宽。【必选】
  • stride:卷积每次滑动的步长为多少,默认是 1 【可选】
  • padding:设置在所有边界增加 值为 0 的边距的大小(也就是在feature map 外围增加几圈 0 ),例如当 padding =1 的时候,如果原来大小为 3 × 3 ,那么之后的大小为 5 × 5 。即在外围加了一圈 0 。【可选】
  • dilation:控制卷积核之间的间距(什么玩意?请看例子)【可选】

如果我们设置的dilation=0的话,效果如图:(蓝色为输入,绿色为输出,卷积核为3 × 3)

如果设置的是dilation=1,那么效果如图:(蓝色为输入,绿色为输出,卷积核仍为 3 × 3 。)

但是这里卷积核点与输入之间距离为1的值相乘来得到输出。

  • groups:控制输入和输出之间的连接。(不常用)【可选】

举例来说:

比如 groups 为1,那么所有的输入都会连接到所有输出

当 groups 为 2的时候,相当于将输入分为两组,并排放置两层,每层看到一半的输入通道并产生一半的输出通道,并且两者都是串联在一起的。这也是参数字面的意思:“组” 的含义。

需要注意的是,in_channels 和 out_channels 必须都可以整除 groups,否则会报错(因为要分成这么多组啊,除不开你让人家程序怎么办?)

  • bias: 是否将一个 学习到的 bias 增加输出中,默认是 True 。【可选】
  • padding_mode : 字符串类型,接收的字符串只有 “zeros” 和 “circular”。【可选】

注意:参数 kernel_size,stride,padding,dilation 都可以是一个整数或者是一个元组,一个值的情况将会同时作用于高和宽 两个维度,两个值的元组情况代表分别作用于 维度。

相关形状

示例

入门学习者请不要过度关注某一些细节,建立一个简单的卷积层使用这个 API 其实很简单,大部分参数保持默认值就好,下面是简单的一个示例,创建一个简单的卷积神经网络:

class CNN(nn.Module):
    def __init__(self,in_channels:int,out_channels:int):
        """
        创建一个卷积神经网络
        网络只有两层
        :param in_channels: 输入通道数量
        :param out_channels: 输出通道数量
        """
        super(CNN).__init__()
        self.conv1=nn.Conv2d(in_channels,10,3,stride=1,padding=1)
        self.pool1=nn.MaxPool2d(kernel_size=2,stride=1)
        self.conv2=nn.Conv2d(10,out_channels,3,stride=1,padding=1)
        self.pool2=nn.MaxPool2d(kernel_size=2,stride=1)
    def forward(self,x):
        """
        前向传播函数
        :param x:  输入,tensor 类型
        :return: 返回结果
        """
        out=self.conv1(x)
        out=self.pool1(out)
        out=self.conv2(out)
        out=self.pool2(out)
        return out

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

PyTorch基础之torch.nn.Conv2d中自定义权重问题

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

PyTorch基础之torch.nn.Conv2d中自定义权重问题

这篇文章主要介绍了PyTorch基础之torch.nn.Conv2d中自定义权重问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-01

gin自定义中间件解决requestBody不可重复读问题(最新推荐)

这篇文章主要介绍了gin自定义中间件解决requestBody不可重复读问题,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-05-18

基于Android中Webview使用自定义的javascript进行回调的问题详解

先说为什么需要讨论这个问题。 现在很多的手机应用,都可能会直接嵌入一个web页面。这样做的好处:一个是功能更新方便,维护起来容易,只需要维护服务器的页面即可,不需要更新客户端;另一个是功能通用,不仅android可以用,ios也可以用,sy
2022-06-06

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录