我的编程空间,编程开发者的网络收藏夹
学习永远不晚

时间序列分析之ARIMA模型预测餐厅销量

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

时间序列分析之ARIMA模型预测餐厅销量

ARIMA模型预测餐厅销量

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
from matplotlib.pylab import style                                   # 自定义图表风格
style.use('ggplot')
# 解决中文的显示问题
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf         # 自相关图、偏自相关图
from statsmodels.tsa.stattools import adfuller as ADF                # 平稳性检验
from statsmodels.stats.diagnostic import acorr_ljungbox              # 白噪声检验
import statsmodels.api as sm                                         # D-W检验,一阶自相关检验
from statsmodels.graphics.api import qqplot                          # 画QQ图,检验一组数据是否服从正态分布
from statsmodels.tsa.arima_model import ARIMA

1、导入数据 

sale = pd.read_excel('./arima_data.xls', index_col='日期')
sale.head()

sale.info()
print('-----')
sale.销量 = sale.销量.astype('float')
sale.info()

2、原始序列检验

· 时序图

plt.figure(figsize=(10,5))
sale.plot()
plt.show()
 
#解读:具有单调递增趋势,则是非平稳序列。

· 自相关图

plot_acf(sale, lags=35).show()
 
#解读:自相关系数长期大于零,没有趋向于零,说明序列间具有很强的长期相关性。

· 平稳性检验

#方法:单位根检验
 
print('原始序列的ADF检验结果为:',ADF(sale.销量))
 
#解读:P值大于显著性水平α(0.05),接受原假设(非平稳序列),说明原始序列是非平稳序列。

第一个是adf检验的结果。 第二个是统计量的P值。 第三个是计算过程中用到的延迟阶数。 第四个是用于ADF回归和计算的观测值的个数。 第五个是配合第一个一起看的,是在99%,95%,90%置信区间下的临界的ADF检验的值。

原文链接:adfuller函数返回值的参数说明与记录

3、一阶差分序列检验

d1_sale = sale.diff(periods=1, axis=0).dropna()
 
#时序图
plt.figure(figsize=(10,5))
d1_sale.plot()
plt.show()
#解读:在均值附件比较平稳波动
 
#自相关图
plot_acf(d1_sale, lags=34).show()
#解读:有短期相关性,但趋向于零。
 
#平稳性检验
print('原始序列的ADF检验结果为:',ADF(d1_sale.销量))
 
#解读:P值小于显著性水平α(0.05),拒绝原假设(非平稳序列),说明一阶差分序列是平稳序列。

· 白噪声检验

print('一阶差分序列的白噪声检验结果为:',acorr_ljungbox(d1_sale, lags=1))#返回统计量、P值
 
#解读:p值小于0.05,拒绝原假设(纯随机序列),说明一阶差分序列是非白噪声序列。

4、定阶

· 参数调优:人工判别

d1_sale = sale.diff(periods=1, axis=0).dropna()
 
#自相关图
plot_acf(d1_sale, lags=34).show()
 
#解读:有短期相关性,但趋向于零。
 
#偏自相关图
plot_pacf(d1_sale, lags=10).show()
 
 
#偏自相关图
plot_pacf(d1_sale, lags=17).show()
 
#解读:自相关图,1阶截尾;偏自相关图,拖尾。则ARIMA(p,d,q)=ARIMA(0,1,1)

· 参数调优:BIC

pmax = int(len(d1_sale) / 10) #一般阶数不超过length/10
qmax = int(len(d1_sale) / 10) #一般阶数不超过length/10
pmax
qmax

bic_matrix = []
for p in range(pmax + 1):
    tmp = []
    for q in range(qmax + 1):
        try:
            tmp.append(ARIMA(tuple(sale), (p, 1, q)).fit().bic)
        except:
            tmp.append(None)
    bic_matrix.append(tmp)
bic_matrix = pd.DataFrame(bic_matrix)
bic_matrix

bic_matrix.stack()

p,q=bic_matrix.stack().idxmin() #最小值的索引
print('用BIC方法得到最优的p值是%d,q值是%d'%(p,q))

· 参数调优:AIC

pmax = int(len(d1_sale )/ 10) #一般阶数不超过length/10
qmax = int(len(d1_sale) / 10) #一般阶数不超过length/10
 
aic_matrix = []
for p in range(pmax + 1):
    tmp = []
    for q in range(qmax + 1):
        try:
            tmp.append(ARIMA(tuple(sale), (p, 1, q)).fit().aic)
        except:
            tmp.append(None)
    aic_matrix.append(tmp)
aic_matrix = pd.DataFrame(aic_matrix)
p,q = aic_matrix.stack().idxmin() #最小值的索引
print('用AIC方法得到最优的p值是%d,q值是%d'%(p,q))

5、建模及预测

· 建模

#创建模型
model = ARIMA(tuple(sale), (0, 1, 1)).fit()
#查看模型报告
model.summary2()

· 残差检验

resid = model.resid
 
#自相关图
plot_acf(resid, lags=35).show()
 
#解读:有短期相关性,但趋向于零。
 
#偏自相关图
plot_pacf(resid, lags=10).show()
 
#偏自相关图
plot_pacf(resid, lags=17).show()

· QQ图

qqplot(resid, line='q', fit=True).show() 
 
#解读:残差服从正态分布,均值为零,方差为常数

· D-W检验

德宾-沃森检验,简称D-W检验,是目前检验自相关性最常用的方法,但它只适用于检验一阶自相关性。 因为自相关系数ρ的值介于-1和1之间,所以 0≤DW≤4。

  • 并且DW=O <=> ρ=1  即存在正自相关性
  • DW=4 <=> ρ=-1 即存在负自相关性
  • DW=2 <=> ρ=0  即不存在(一阶)自相关性

因此,当DW值显著的接近于O或4时,则存在自相关性,而接近于2时,则不存在(一阶)自相关性。

print('D-W检验的结果为:',sm.stats.durbin_watson(resid.values))  
 
#解读:不存在一阶自相关

· Ljung-Box检验

Ljung-Box test是对randomness的检验,或者说是对时间序列是否存在滞后相关的一种统计检验。对于滞后相关的检验,我们常常采用的方法还包括计算ACF和PCAF并观察其图像,但是无论是ACF还是PACF都仅仅考虑是否存在某一特定滞后阶数的相关。LB检验则是基于一系列滞后阶数,判断序列总体的相关性或者说随机性是否存在。

时间序列中一个最基本的模型就是高斯白噪声序列。而对于ARIMA模型,其残差被假定为高斯白噪声序列,所以当我们用ARIMA模型去拟合数据时,拟合后我们要对残差的估计序列进行LB检验,判断其是否是高斯白噪声,如果不是,那么就说明ARIMA模型也许并不是一个适合样本的模型。

检验的结果就是看最后一列前十二行的检验概率(一般观察滞后1~12阶),如果检验概率小于给定的显著性水平,比如0.05、0.10等就拒绝原假设,其原假设是相关系数为零。

# 方法一
print('残差序列的白噪声检验结果为:',acorr_ljungbox(resid,lags=1))#返回统计量、P值
 
#解读:残差是白噪声

# 方法二
confint,qstat,pvalues = sm.tsa.acf(resid.values, qstat=True) #qstat is Ljung-Box Q-Statistic. confint is  Confidence intervals for the ACF
data = np.c_[range(1,36), confint[1:], qstat, pvalues]
table = pd.DataFrame(data, columns=['lag', "confint", "qstat", "pvalues(>Q)"])
print(table.set_index('lag'))

· 预测

#预测
print('未来7天的销量预测:')
model.forecast(7) #预测、标准差、置信区间

forecast = pd.Series(model.forecast(7)[0], index=pd.date_range('2015-2-7', periods=7, freq='D'))
forecast

data = pd.concat((sale, forecast), axis=0)
data.columns = ['销量', '未来7天销量']
plt.figure(figsize = (10,5))
data.plot()
plt.show()

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

时间序列分析之ARIMA模型预测餐厅销量

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python如何通过ARIMA模型进行时间序列分析预测

本文介绍了如何在Python中使用ARIMA模型进行时间序列分析预测。它提供了逐步指南,包括导入库、加载数据、确定模型参数、拟合模型、预测和评估预测。此外,还讨论了高级功能,如季节性ARIMA模型、外生变量和状态空间模型。
Python如何通过ARIMA模型进行时间序列分析预测
2024-04-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录