我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python中的图像处理之Python图像平滑操作

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python中的图像处理之Python图像平滑操作

前言

随着人工智能研究的不断兴起,Python的应用也在不断上升,由于Python语言的简洁性、易读性以及可扩展性,特别是在开源工具和深度学习方向中各种神经网络的应用,使得Python已经成为最受欢迎的程序设计语言之一。由于完全开源,加上简单易学、易读、易维护、以及其可移植性、解释性、可扩展性、可扩充性、可嵌入性:丰富的库等等,自己在学习与工作中也时常接触到Python,这个系列文章的话主要就是介绍一些在Python中常用一些例程进行仿真演示!

本系列文章主要参考杨秀章老师分享的代码资源,杨老师博客主页是Eastmount,杨老师兴趣广泛,不愧是令人膜拜的大佬,他过成了我理想中的样子,希望以后有机会可以向他请教学习交流。

因为自己是做图像语音出身的,所以结合《Python中的图像处理》,学习一下Python,OpenCV已经在Python上进行了多个版本的维护,所以相比VS,Python的环境配置相对简单,缺什么库直接安装即可。本系列文章例程都是基于Python3.8的环境下进行,所以大家在进行借鉴的时候建议最好在3.8.0版本以上进行仿真。本文继续来对本书第十章的后4个例程进行介绍。

一. Python准备

如何确定自己安装好了python

win+R输入cmd进入命令行程序

在这里插入图片描述

点击“确定”

在这里插入图片描述

输入:python,回车

在这里插入图片描述

看到Python相关的版本信息,说明Python安装成功。

二. Python仿真

(1)新建一个chapter10_06.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2021-06-07
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('te.png')
source = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
 
#双边滤波
result = cv2.bilateralFilter(source, 15, 150, 150)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = ['原始图像', '双边滤波']  
images = [source, result]  
for i in range(2):  
   plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

保存.py文件
输入eixt()退出python,输入命令行进入工程文件目录

在这里插入图片描述

输入以下命令,跑起工程

python chapter10_06.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

(2)新建一个chapter10_07.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2021-06-07
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('te.png')
source = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
 
#均值滤波
result1 = cv2.blur(source, (5,5))
result2 = cv2.blur(source, (10,10))

#方框滤波
result3 = cv2.boxFilter(source, -1, (5,5), normalize=1)
result4 = cv2.boxFilter(source, -1, (2,2), normalize=0)

#高斯滤波
result5 = cv2.GaussianBlur(source, (3,3), 0)
result6 = cv2.GaussianBlur(source, (15,15), 0)

#中值滤波
result7 = cv2.medianBlur(source, 3)

#高斯双边滤波
result8 =cv2.bilateralFilter(source, 15, 150, 150)

#显示图形
titles = ['Source', 'Blur 5*5', 'Blur 10*10', 'BoxFilter 5*5',
          'BoxFilter 2*2', 'GaussianBlur 3*3', 'GaussianBlur 15*15',
          'medianBlur', 'bilateralFilter']  
images = [source, result1, result2, result3,
          result4, result5, result6, result7, result8]  
for i in range(9):  
   plt.subplot(3,3,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

保存.py文件输入以下命令,跑起工程

python chapter10_07.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

(3)新建一个chapter10_08.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2021-06-07
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('test01_yn.png')
source = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
 
#中值滤波
result1 = cv2.medianBlur(source, 3)

#高斯双边滤波
result2 =cv2.bilateralFilter(source, 15, 150, 150)

#均值迁移
result3 = cv2.pyrMeanShiftFiltering(source, 20, 50)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = ['原始图像',  '中值滤波', '双边滤波', '均值迁移']  
images = [source, result1, result2, result3]  
for i in range(4):  
   plt.subplot(2,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

保存.py文件输入以下命令,跑起工程

python chapter10_08.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

(4)新建一个chapter10_09.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding:utf-8 -*-
import cv2
import numpy as np

#读取图片
img = cv2.imread("te.png", cv2.IMREAD_UNCHANGED)
rows, cols, chn = img.shape

#加噪声
for i in range(5000):    
    x = np.random.randint(0, rows) 
    y = np.random.randint(0, cols)    
    img[x,y,:] = 255

cv2.imshow("noise", img)
           
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

保存.py文件输入以下命令,跑起工程

python chapter10_09.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

三. 小结

本文主要介绍在Python中调用OpenCV库对图像进行图像平滑滤波处理与图像加噪处理,如双边滤波,高斯双边滤波,图像加随机噪声等操作。由于本书的介绍比较系统全面,所以会出一个系列文章进行全系列仿真实现,感兴趣的还是建议去原书第十章深入学习理解,下一篇文章将继续介绍第十一章节的5例仿真实例。每天学一个Python小知识,大家一起来学习进步阿!

到此这篇关于Python中的图像处理之Python图像平滑处理操作的文章就介绍到这了,更多相关Python图像平滑内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python中的图像处理之Python图像平滑操作

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python图像平滑处理的方法

这篇文章主要介绍“python图像平滑处理的方法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“python图像平滑处理的方法”文章能帮助大家解决问题。前言:图像滤波是图像处理和计算机视觉中最常用、最
2023-07-02

如何在Python中使用OpenCV实现图像平滑处理操作

这期内容当中小编将会给大家带来有关如何在Python中使用OpenCV实现图像平滑处理操作,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。什么是图像平滑处理在尽量保留图像原有信息的情况下,过滤掉图像内部的噪
2023-06-15

Python图像处理之模糊图像判断

这篇文章主要为大家详细介绍了Python图像处理中的模糊图像判断的实现,文中的示例代码讲解详细,具有一定的借鉴价值,需要的可以参考一下
2022-12-08

Python图像处理之图像清晰度评价

图像清晰度评价,顾名思义就是能够通过一张标准图,对同一组相机拍摄的照片进行清晰度评价。本文将利用Python实现这一效果,需要的可以参考一下
2022-12-08

Python图像处理之PIL库

本篇文章给大家带来了关于python的相关知识,其中主要整理了PIL库的相关问题,PIL库是一个具有强大图像处理能力的第三方库,不仅包含了丰富的像素、色彩操作功能,还可以用于图像归档和批量处理,下面一起来看一下,希望对大家有帮助。要点:PIL库是一个具有强大图像处理能力的第三方库,不仅包含了丰富的像素、色彩操作功能,还可以用于图像归档和批量处理。1.PIL库概述PIL(Python Image Li
2022-06-23

Python之简单的图像处理

参考:http://justcoding.iteye.com/blog/901605      http://www.iteye.com/topic/314790     PythonWare公司提供了免费的Python图像处理工具包PIL
2023-01-31

【python图像处理】python中定

python中的颜色相关的定义在matplotlib模块中,为方便使用,这里给大家展示一下在这个模块中都定义了哪些选颜色。1、颜色名称的导出导出代码如下:import matplotlibfor name, hex in matplotli
2023-01-31

Python图像处理之图像增广算法详解

图像增广算法在计算机视觉领域扮演着至关重要的角色,本文将着重介绍图像增广算法中的三个关键方面:图像旋转、图像亮度调整以及图像裁剪与拼接,感兴趣的可以了解一下
2023-05-20

Python图像处理之图像与视频处理基础教程

这篇文章主要介绍了Python图像处理之图像与视频处理基础教程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-05-15

python图像处理基本操作有哪些

这篇文章主要介绍python图像处理基本操作有哪些,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一、PIL库对图像的基本操作1、读取图片PIL网上有很多介绍,这里不再讲解。直接操作,读取一张图片,将其转换为灰度图像,
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录