我的编程空间,编程开发者的网络收藏夹
学习永远不晚

利用Python实现眨眼计数器的示例代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

利用Python实现眨眼计数器的示例代码

一、前言

这几天宅在家里网上冲浪,无意间看到了一个比较有趣的项目,就是使用 Python 语言实现对视频中的人物的眨眼进行计数并描绘在图表中。我尝试了一下,发现是可以实现的,所以自己码了一遍代码并简单注释了一下,有兴趣的朋友可以浅试一下。

该项目大致效果如下:

Now, let's start! 

二、实现步骤

对于创建项目文件夹配置环境以及如何安装第三方库这里就不再详细的介绍了,有不会的同学可以去翻我之前的文章或者其他博主的文章去了解学习吧,并不是很难。

1.第三方库

首先我们需要安装 cvzone(一个比较专业的计算机视觉包,在面部识别,手势、姿势检测中为我们提供了很多便利)。还有一个包是 mediapipe,我们将会使用它来实现面部检测网络,以便于对视频中的眼睛部位进行观察。

2.导入视频文件并播放

实现代码及效果如下:

import cv2
import cvzone
 
cap = cv2.VideoCapture('BlinkCounter.mp4')#获取需要检测的视频(添加视频路径即可,此处由于视频和Python文件在同一路径,直接调用即可)
 
while True:
    success, img = cap.read()
    img = cv2.resize(img, (640, 360)) #对图像尺寸进行调节
    cv2.imshow("Image", img)          #显示图像
    cv2.waitKey(1)

3.让视频循环播放

我们要对视频中的眨眼次数进行计数,但通过上面的代码可以看出视频很快就播放结束了,所以我们采用检查视频帧数的方式,当达到视频的最后一帧时对其进行重置,达到循环播放视频的目的。代码如下:

#------------------------------------------------------------
#检查当前帧数是否等于视频的总体帧数,如果相等,将播放帧数重置为0
#------------------------------------------------------------
    if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):  
        cap.set(cv2.CAP_PROP_POS_FRAMES, 0)

4.创建面部检测器

该步骤需要使用到 cvzone 中的相应模块来实现,具体代码及注释如下:

import cv2
import cvzone
from cvzone.FaceMeshModule import FaceMeshDetector  #调用面部检测模块
 
cap = cv2.VideoCapture('BlinkCounter.mp4')#获取需要检测的视频(添加视频路径即可,此处由于视频和Python文件在同一路径,直接调用即可)
detector = FaceMeshDetector(maxFaces = 1)#创建人脸网络检测器,检测面部数量为1
 
while True:
#------------------------------------------------------------
#检查当前帧数是否等于视频的总体帧数,如果相等,将播放帧数重置为0
#------------------------------------------------------------
    if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):
        cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
#------------------------------------------------------------
    success, img = cap.read()
    img, faces = detector.findFaceMesh(img)#绘制人脸网络
 
    img = cv2.resize(img, (640, 360)) #对图像尺寸进行调节
    cv2.imshow("Image", img)          #显示图像
    cv2.waitKey(1) 

得到的结果如下:

5.对眼睛周围的点进行标记

由于面部检测器是对面部用点进行标记的,所以我们需要找到那些眼睛周围的点并将它们使用特殊的点来进行标记,从而达到检测眼睛闭合与张开的目的,相应的点数以及代码如下:

idList = [22, 23, 24, 26, 110, 157, 158, 159, 160, 161, 130, 243]#面部检测器中眼眶周围的像素点
 
color = (0, 0, 255)#将颜色设置为红色
 
#------------------------------------------------------------
#检测到面部时将面部的关于眼眶的点用圆圈表示出来,并填补完整
#------------------------------------------------------------
    if faces:
        face = faces[0]
        for id in idList:
            cv2.circle(img, face[id], 5, color, cv2.FILLED)

得到的效果如下,可以看出,已经对眼眶进行了标记:

我们可以对面部检测网络进行设置,让其他的一些点不再显示出来,只关注我们的目标点,具体操作方式是只需要在函数中添加一个参数即可,效果如下:

img, faces = detector.findFaceMesh(img, draw = False)#绘制人脸检测网络,将参数 draw 修改为    False 即可抹去其他的不必要的点

6.观察眼睛宽度和长度变化并进行计数

如果单纯的靠上下眼皮的变化来检测是否眨眼会造成判断错误,所以我们需要结合眼睛长度和宽度之比进行判断。将这项数据的变化趋势绘制在一个窗口中,就会使得我们的观察更加明显,得到的效果也将更加优良。具体代码如下:

#-------------------------------------------------------------
#使用眼眶周围不同的点之间的距离以及眼睛宽度和长度的对比进行眨眼计数
#-------------------------------------------------------------
        leftUp = face[159]#定义不同部位的像素点
        leftDown = face[23]
        leftLeft = face[130]
        leftRight = face[243]
        lenghtVer, _ = detector.findDistance(leftUp, leftDown)#得到眼睛宽度
        lenghtHor, _ = detector.findDistance(leftLeft, leftRight)#得到眼睛长度
 
        cv2.line(img, leftUp, leftDown, (0, 200, 0), 3)#绘制与眼睛等宽的线段
        cv2.line(img, leftLeft, leftRight, (0, 200, 0), 3)#绘制与眼睛等长的线段
 
        ratio = int((lenghtVer / lenghtHor) * 100)#得到的数据并进行标准化,得到比率值
 
        ratioList.append(ratio)#使用比率值填补列表
        #------------------------------------------------------------------
        #从之前的一共三个比率中得到平均值,如果比率数目大于3将会删去前面的比率值
        #------------------------------------------------------------------
        if len(ratioList) > 3:
            ratioList.pop(0)
        ratioAvg = sum(ratioList) / len(ratioList)#得到比率平均值
        #------------------------------------
        #通过比率平均值的变化对眨眼次数进行计数
        #------------------------------------
        if ratioAvg < 35 and counter == 0:
            blinkCounter += 1#变化一次,计数器加一
            color = (0, 200, 0)
            counter = 1
        if counter != 0:
            counter += 1
            if counter > 10:
                counter = 0
                color = (255, 0, 255)
        #-----------------------------
        #编写文本框来记录眨眼的总体次数
        #------------------------------
        cvzone.putTextRect(img, f'Blink Count: {blinkCounter}', (50, 250),
                           12, colorR = color)
 
        imgPlot = plotY.update(ratioAvg, color)
        img = cv2.resize(img, (400, 640))  # 对图像尺寸进行调节
        imgStack = cvzone.stackImages([img, imgPlot], 2, 1)#将两幅图像放到一起,叠放为2列图像
    else:
        img = cv2.resize(img, (400, 640))  # 对图像尺寸进行调节
        imgStack = cvzone.stackImages([img, img], 2, 1)

通过以上步骤大致就能实现眨眼计数了。 

三、整体代码

整体代码如下,已经添加了注释,如果有解释的不清楚的地方可以在评论区交流。

import cv2
import cvzone
from cvzone.FaceMeshModule import FaceMeshDetector
from cvzone.PlotModule import LivePlot
 
cap = cv2.VideoCapture('BlinkCounter.mp4')#获取需要检测的视频(添加视频路径即可,此处由于视频和Python文件在同一路径,直接调用即可)
detector = FaceMeshDetector(maxFaces = 1)#创建人脸网络检测器,检测面部数量为1
plotY = LivePlot(640, 640, [20, 50], invert = True)#创建窗口来绘制数据的变化
 
idList = [22, 23, 24, 26, 110, 157, 158, 159, 160, 161, 130, 243]#面部检测器中眼眶周围的像素点
ratioList = []#创建一个空的比率列表
blinkCounter = 0
counter = 0#避免每一个帧节进行一次计数
 
color = (0, 0, 255)#将颜色设置为红色
 
while True:
#------------------------------------------------------------
#检查当前帧数是否等于视频的总体帧数,如果相等,将播放帧数重置为0
#------------------------------------------------------------
    if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):
        cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
 
    success, img = cap.read()#读取到的视频
    img, faces = detector.findFaceMesh(img, draw = False)#绘制人脸检测网络
#------------------------------------------------------------
#检测到面部时将面部的关于眼眶的点用圆圈表示出来,并填补完整
#------------------------------------------------------------
    if faces:
        face = faces[0]
        for id in idList:
            cv2.circle(img, face[id], 5, color, cv2.FILLED)
#-------------------------------------------------------------
#使用眼眶周围不同的点之间的距离以及眼睛宽度和长度的对比进行眨眼计数
#-------------------------------------------------------------
        leftUp = face[159]#定义不同部位的像素点
        leftDown = face[23]
        leftLeft = face[130]
        leftRight = face[243]
        lenghtVer, _ = detector.findDistance(leftUp, leftDown)#得到眼睛宽度
        lenghtHor, _ = detector.findDistance(leftLeft, leftRight)#得到眼睛长度
 
        cv2.line(img, leftUp, leftDown, (0, 200, 0), 3)#绘制与眼睛等宽的线段
        cv2.line(img, leftLeft, leftRight, (0, 200, 0), 3)#绘制与眼睛等长的线段
 
        ratio = int((lenghtVer / lenghtHor) * 100)#得到的数据并进行标准化,得到比率值
 
        ratioList.append(ratio)#使用比率值填补列表
        #------------------------------------------------------------------
        #从之前的一共三个比率中得到平均值,如果比率数目大于3将会删去前面的比率值
        #------------------------------------------------------------------
        if len(ratioList) > 3:
            ratioList.pop(0)
        ratioAvg = sum(ratioList) / len(ratioList)#得到比率平均值
        #------------------------------------
        #通过比率平均值的变化对眨眼次数进行计数
        #------------------------------------
        if ratioAvg < 35 and counter == 0:
            blinkCounter += 1#变化一次,计数器加一
            color = (0, 200, 0)
            counter = 1
        if counter != 0:
            counter += 1
            if counter > 10:
                counter = 0
                color = (255, 0, 255)
        #-----------------------------
        #编写文本框来记录眨眼的总体次数
        #------------------------------
        cvzone.putTextRect(img, f'Blink Count: {blinkCounter}', (50, 250),
                           12, colorR = color)
 
        imgPlot = plotY.update(ratioAvg, color)
        img = cv2.resize(img, (400, 640))  # 对图像尺寸进行调节
        imgStack = cvzone.stackImages([img, imgPlot], 2, 1)#将两幅图像放到一起,叠放为2列图像
    else:
        img = cv2.resize(img, (400, 640))  # 对图像尺寸进行调节
        imgStack = cvzone.stackImages([img, img], 2, 1)
 
    img = cv2.resize(img, (400, 640)) #对图像尺寸进行调节
    cv2.imshow("Image", imgStack)
    cv2.waitKey(1)

以上就是利用Python实现眨眼计数器的示例代码的详细内容,更多关于Python眨眼计数器的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

利用Python实现眨眼计数器的示例代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Qt利用QNetwork实现上传数据的示例代码

这篇文章主要为大家详细介绍了Qt如何利用QNetwork实现上传数据的功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
2023-02-24

Python实现计算信息熵的示例代码

信息熵(information entropy)是信息论的基本概念。描述信息源各可能事件发生的不确定性。本文将通过Python实现信息熵的计算,感兴趣的可以了解一下
2022-12-26

使用Python实现tail的示例代码

tail是一个常用的Linux命令,它可以打印文件的后面n行数据,也能实时输出文件的追加数据。本文就来用Python实现tail,感兴趣的可以了解一下
2023-03-01

利用Redis实现点赞功能的示例代码

目录mysql 和 Redis优缺点1、Redis 缓存设计及实现部分代码如下Redis 存储结构如图2、数据库设计3、开启定时任务持久化存储到数据库部分代码如下提到点赞,大家一想到的是不是就是朋友圈的点赞呀?其实点赞对我们来说并不陌生,我
2022-06-28

利用Ajax实现智能回答的机器人示例代码

这篇文章主要介绍了利用Ajax实现智能回答的机器人,本文结合示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2022-12-24

Java利用Redis实现消息队列的示例代码

本文介绍了Java利用Redis实现消息队列的示例代码,分享给大家,具体如下:应用场景为什么要用redis二进制存储、java序列化传输、IO连接数高、连接频繁一、序列化这里编写了一个java序列化的工具,主要是将对象转化为byte数组,和
2023-05-31

Python实现端口扫描器的示例代码

目录socket概念 socket基本用法 创建tcp套接字 实现端口扫描 socket概念socket又称套接字,可以看做是不同主机之间的进程进双向通信的端点,简单的说就是通信的两的种约定,套接字中的相关函数来完成通信过程,发出网络请求或
2022-06-02

K-means聚类算法介绍与利用python实现的代码示例

聚类 今天说K-means聚类算法,但是必须要先理解聚类和分类的区别,很多业务人员在日常分析时候不是很严谨,混为一谈,其实二者有本质的区别。 分类其实是从特定的数据中挖掘模式,作出判断的过程。比如Gmail邮箱里有垃圾邮件分类器,一开始的时
2022-06-04

利用linux的timerfd_create实现计时器示例分享

timer_poll.h #ifndef TIMER_POLL_H#define TIMER_POLL_H#include
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录