我的编程空间,编程开发者的网络收藏夹
学习永远不晚

怎么使用Python对NetCDF数据做空间相关分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

怎么使用Python对NetCDF数据做空间相关分析

这篇文章主要介绍了怎么使用Python对NetCDF数据做空间相关分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

python有哪些常用库

python常用的库:1.requesuts;2.scrapy;3.pillow;4.twisted;5.numpy;6.matplotlib;7.pygama;8.ipyhton等。

引言:我一直想理解空间相关分析的计算思维,于是今天又拿起Python脚本和数据来做练习。首先需要说明的是,这次实验的数据和Python脚本均来自于[好久不见]大佬,在跟大佬说明之后,允许我写到公众号来与大家共享,在此对大佬的指点表示感谢,这次实验的脚本可在气象家园或简书app(如果没记错的话)搜索到这次实验的相关内容,也可以微信或者后台发消息给我获取。在此之前我觉得自己还没理解这个方法的计算思维,检验的标准就是我能否迅速运用到其他方面。于是今天又重新回来温习一遍,我把自己的理解与大伙共同交流。

首先,数据的格式是NetCDF(.nc)数据,两个数据分别是[哈德来中心海温sst数据,pc数据是对东太平洋SSTA做的EOF获取]。知道数据信息之后我们就准备开始去运行程序。原始脚本包括了回归分析和相关分析两部分,但是今天我做了空间相关分析这一部分,有兴趣的可以到[好久不见]大佬的气象家园阅读喔!如果还没有安装Cartopy包的话请在后台联系我喔

为了方便理解每一步,我选择去Jupyter运行,因为可以一段一段程序的运行,这是比较方便的。绘图部分并不是很难,关键还是在于数据预处理部分。

空间相关分析的脚本如下:

import numpy as np #数值计算用,如相关系数import xarray as xr #读取.nc文件用from sklearn.feature_selection import f_regression #做显著性检验import matplotlib.pyplot as plt #绘制和展示图形用import cartopy.crs as ccrs #绘制地图用,如果没有安装好的话,请在后台联系我import cartopy.feature as cfeature #添加一些矢量用,这里没用到,因为我没数据from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter #经纬度格式设置import cmaps #ncl的color,如果没有的话,请联系我,也可以在气象家园找到#使用上下文管理器读取.nc数据,并提取数据中的变量,可以提前用NASA的panoply这个软件查看.nc信息with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\sst.DJF.mean.anom.nc') as f1:      pre = f1['sst_anom'][:-1, :, :]  # 三维数据全取,时间,纬度+经度      lat, lon = f1['lat'], f1['lon'] #提取经纬度,后面格网化需要用到pre2d = np.array(pre).reshape(pre.shape[0], pre.shape[1]*pre.shape[2])#0表示行个数,1列代表的个数,2经度代表个数with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\pc.DJF.sst.nc') as f2:      pc = f2['pc'][0, :]# 相关系数计算pre_cor = np.corrcoef(pre2d.T, pc)[:-1, -1].reshape(len(lat), len(lon))# 做显著性检验pre_cor_sig = f_regression(np.nan_to_num(pre2d), pc)[1].reshape(len(lat), len(lon))#用0代替NaNarea = np.where(pre_cor_sig < 0.05)# numpy的作用又来了 nx, ny = np.meshgrid(lon, lat)  # 格网化经纬度,打印出来看看就知道为什么要这么做了plt.figure(figsize=(16, 8)) #创建一个空画布#让colorbar字体设置为新罗马字符plt.rcParams['font.family'] = 'Times New Roman'plt.rcParams['font.size'] = 16ax2 = plt.subplot(projection=ccrs.PlateCarree(central_longitude=180))# 在画布上绘图,这个叫axes,这不是坐标轴喔ax2.coastlines(lw=0.4)ax2.set_global()c2 = ax2.contourf(nx, ny, pre_cor, extend='both', cmap=cmaps.nrl_sirkes, transform=ccrs.PlateCarree())plt.colorbar(c2,fraction=0.05,orientation='horizontal', shrink=0.4, pad=0.06)# extend关键字设置colorbar的形状,both为两端尖的,pad是距离主图的距离,其他参数web搜索# 显著性打点sig2 = ax2.scatter(nx[area], ny[area], marker='+', s=1, c='k', alpha=0.6, transform=ccrs.PlateCarree())# 凸显显著性区域plt.title('Correlation Analysis', fontdict={'family' : 'Times New Roman', 'size'   : 16})#标题字体也修改为新罗马字符,数字和因为建议都用新罗马字符ax2.set_xticks(np.arange(0, 361, 30),crs=ccrs.PlateCarree())# 经度范围设置,nunpy的作用这不就又来了嘛plt.xticks(fontproperties = 'Times New Roman',size=16) #修改xy刻度字体为新罗马字符plt.yticks(fontproperties = 'Times New Roman',size=16)ax2.set_yticks(np.arange(-90, 90, 15),crs=ccrs.PlateCarree())# 设置yax2.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label = False))#经度0度不加东西ax2.yaxis.set_major_formatter(LatitudeFormatter())# 设置经纬度格式,就是多少度显示那样的,而不是一些数字ax2.set_extent([-178, 178, -70, 70], crs=ccrs.PlateCarree())# 设置空间范围plt.grid(color='k')# 画一个网格吧plt.show()# 显示出图形

那么就运行看看效果吧

怎么使用Python对NetCDF数据做空间相关分析

怎么使用Python对NetCDF数据做空间相关分析

如果觉得这个color不喜欢的话,就换一下ncl的来吧,ncl的颜色多而漂亮,喜欢啥就换啥

怎么使用Python对NetCDF数据做空间相关分析

怎么使用Python对NetCDF数据做空间相关分析

想要理解这个方法的计算思维,有必要观察原始数据和数据处理之后的样式,理解了数据样式之后可能更有助于我们理解整个程序

import numpy as npimport xarray as xrfrom sklearn.feature_selection import f_regressionimport matplotlib.pyplot as pltimport cartopy.crs as ccrsimport cartopy.feature as cfeaturefrom cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatterimport cmapswith xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\sst.DJF.mean.anom.nc') as f1:      pre = f1['sst_anom'][:-1, :, :]  # 三维数据全取,时间,纬度+经度      lat, lon = f1['lat'], f1['lon']pre2d = np.array(pre).reshape(pre.shape[0], pre.shape[1]*pre.shape[2])#0行代表的个数,1纬度,2经度#pre2d.shape是一个39行,16020列的矩阵,T之后就变为了16020行,39列with xr.open_dataset(r'D:\inuyasha\codeX\codeLEARN\pc.DJF.sst.nc') as f2:      pc = f2['pc'][0, :]#pc是一个39行的数组# # 相关系数pre_cor = np.corrcoef(pre2d.T, pc)[:-1, -1].reshape(len(lat), len(lon))#pre_cor.shape,(16020,)->reshape(89,180)# # 显著性检验# pre_cor_sig = f_regression(np.nan_to_num(pre2d), pc)[1].reshape(len(lat), len(lon))#用0代替NaN# area = np.where(pre_cor_sig < 0.05)nx, ny = np.meshgrid(lon, lat)  # 格网化nx,ny

怎么使用Python对NetCDF数据做空间相关分析

看看格网化后的经纬度多规范啊。画张图来看看可能也会直观一些。

怎么使用Python对NetCDF数据做空间相关分析

感谢你能够认真阅读完这篇文章,希望小编分享的“怎么使用Python对NetCDF数据做空间相关分析”这篇文章对大家有帮助,同时也希望大家多多支持编程网,关注编程网行业资讯频道,更多相关知识等着你来学习!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

怎么使用Python对NetCDF数据做空间相关分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

怎么使用Python对NetCDF数据做空间相关分析

这篇文章主要介绍了怎么使用Python对NetCDF数据做空间相关分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。python有哪些常用库python常用的库:1.requ
2023-06-14

如何用Python对数据进行相关性分析

这期内容当中小编将会给大家带来有关如何用Python对数据进行相关性分析,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。在进行数据分析时,我们所用到的数据往往都不是一维的,而这些数据在分析时难度就增加了不少
2023-06-16

怎么用python做数据分析

要使用Python进行数据分析,可以按照以下步骤进行:1. 安装Python和相关库:首先,确保你已经安装了Python的最新版本。然后,使用pip安装常用的数据分析库,例如NumPy、Pandas、Matplotlib和Seaborn。2
2023-10-12

Python数据分析Numpy中常用相关性函数是什么

今天小编给大家分享一下Python数据分析Numpy中常用相关性函数是什么的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。摘要
2023-06-30

怎么使用Python进行数据分析

使用Python进行数据分析可以通过以下几个步骤:1. 安装Python和相关库:首先需要安装Python解释器,推荐使用Anaconda发行版,因为它已经包含了很多常用的数据分析库,如NumPy、Pandas和Matplotlib等。可以
2023-08-23

怎么用Python与AI分析时间序列数据

这篇文章主要讲解了“怎么用Python与AI分析时间序列数据”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么用Python与AI分析时间序列数据”吧!简介时间序列数据表示一系列特定时间内的
2023-06-30

Python数据分析之堆叠数组函数怎么使用

今天小编给大家分享一下Python数据分析之堆叠数组函数怎么使用的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。numpy 堆
2023-07-05

怎么使用numpy提高Python数据分析效率

今天小编给大家分享一下怎么使用numpy提高Python数据分析效率的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。1、数组初
2023-07-06

python怎么批量统计Oracle数据库的空间使用量

这篇文章主要介绍“python怎么批量统计Oracle数据库的空间使用量”,在日常操作中,相信很多人在python怎么批量统计Oracle数据库的空间使用量问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”pyt
2023-06-04

怎么在Python中使用pandas实现数据分析

怎么在Python中使用pandas实现数据分析?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。一、比较运算符和比较方法比较运算符用于判断是否相等和比较大小,Py
2023-06-15

怎么在Python中使用pandas函数实现数据分析

本篇文章给大家分享的是有关怎么在Python中使用pandas函数实现数据分析,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。python有哪些常用库python常用的库:1.r
2023-06-14

怎么使用python处理数据类型及颜色空间转换

这篇文章主要介绍“怎么使用python处理数据类型及颜色空间转换”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么使用python处理数据类型及颜色空间转换”文章能帮助大家解决问题。一、图像数据类型
2023-07-02

怎么使用Python+ChatGPT进行游戏运营数据分析

本篇内容介绍了“怎么使用Python+ChatGPT进行游戏运营数据分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!数据您的团队已经为您提
2023-07-05

怎么利用Python对500强排行榜数据进行可视化分析

今天小编给大家分享一下怎么利用Python对500强排行榜数据进行可视化分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。一
2023-06-30

python怎么使用dabl实现数据处理分析及ML自动化

这篇文章主要讲解了“python怎么使用dabl实现数据处理分析及ML自动化”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“python怎么使用dabl实现数据处理分析及ML自动化”吧!dab
2023-06-25

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录