我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python怎么实现数据清洗

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python怎么实现数据清洗

本文小编为大家详细介绍“Python怎么实现数据清洗”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python怎么实现数据清洗”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

这里数据清洗需要用到的库是pandas库,下载方式还是在终端运行 : pip install pandas.

首先我们需要对数据进行读取

import pandas as pd data = pd.read_csv(r'E:\PYthon\用户价值分析 RFM模型\data.csv')pd.set_option('display.max_columns', 888)  # 大于总列数pd.set_option('display.width', 1000)print(data.head())print(data.info())

第3行是对数据进行读取,pandas库里面有读取函数调用即可,csv格式是读取写入速度最快的。

第4,5行是为了读取的实话显示全部的列,是因为很多列的话pycharm会把中间一些列隐藏掉,所以我们这为了他不隐藏就加这两行代码。

第6行是显示表头,我们可以看到有什么字段,列名

第7行是显示表的基本信息,每一列有多少数据,字段是什么类型的数据。非空的数据有多少,所以我们第一步就可以看得到基本那一列有空值了。

Python怎么实现数据清洗

空值处理

data.info()后我们可以看到大部分数据都有541909行,所以我们大致猜到是Description ,CustomerID 列漏结果了

# 空值处理print(data.isnull().sum())  # 空值中和,查看每一列的空值 # 空值删除data.drop(columns=['Description'], inplace=True)print(data.info())data.isnull()判断是否为空。data.isnumll().sum()计算空值数量。

第5行进行空值删除,这里先删除Description列的空值,inplace=True意思是对数据进行修改,如果没有inplace=True,则不对data进行修改,打印数据还是和之前一样,或者重新定义一个变量进行赋值。

由于这一列空值数据比较少,这一列数据对我们数据分析没有那么重要,所以我们选择删除这一整列。

我们这个表是对客户进行筛选的,所以以CustomerID为准,强制删除其他列

# CustomerID有空值# 删除所有列的空值data.dropna(inplace=True)# print(data.info())print(data.isnull().sum())  # 由于CustomerID为必须字段,所以强制删除其他列,以CustomerID为准

这里我们先对其他字段进行类型转换

类型转换

# 转换为日期类型data['InvoiceDate'] = pd.to_datetime(data['InvoiceDate']) # CustomerID 转换为整型data['CustomerID'] = data['CustomerID'].astype('int')print(data.info())

以上我们处理了空值,接下来我们处理异常值。

异常值处理

查看表的基本数据分布可以使用describe

print(data.describe())

可以看到数据Quantity 列中最小值为-80995.这列明显有异常值,所以需要对这一列进行异常值筛选。

只需要大于0的值。

Python怎么实现数据清洗

data = data[data['Quantity'] > 0]print(data)

打印一下就只有397924行了。

重复值处理

# 查看重复值print(data[data.duplicated()])

Python怎么实现数据清洗

有5194行重复值,这里的重复值是完全重复的,所以是没用的数据我们可以进行删除。

删除重复值

# 删除重复值data.drop_duplicates(inplace=True) print(data.info())

删除后对原来的表进行保存,再去查看一下表的基本信息

Python怎么实现数据清洗

现在还剩下392730条数据。数据到这一步就完成了数据清洗。

读到这里,这篇“Python怎么实现数据清洗”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python怎么实现数据清洗

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python怎么实现数据清洗

本文小编为大家详细介绍“Python怎么实现数据清洗”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python怎么实现数据清洗”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。这里数据清洗需要用到的库是pandas
2023-07-06

Python如何实现数据清洗

小编给大家分享一下Python如何实现数据清洗,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!数据清洗小工具箱在下面的代码片段中,数据清洗代码被封装在了一些函数中,代码的目的十分直观。你可以直接使用这些代码,无需将它们嵌入到
2023-06-28

使用Python怎么清洗数据

今天就跟大家聊聊有关使用Python怎么清洗数据,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。下面我们用一副待清洗的扑克牌作为示例,假设它保存在代码文件相同的目录下,在 Jupyte
2023-06-16

怎么使用Python进行数据清洗

这篇文章主要讲解了“怎么使用Python进行数据清洗”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Python进行数据清洗”吧!缺失值当数据集中包含缺失数据时,在填充之前可以先进行一
2023-07-06

python操作excel实现数据清洗的示例

本文将为大家详细介绍“python操作excel实现数据清洗的示例”,内容步骤清晰详细,细节处理妥当,而小编每天都会更新不同的知识点,希望这篇“python操作excel实现数据清洗的示例”能够给你意想不到的收获,请大家跟着小编的思路慢慢深
2023-06-06

python如何清洗数据

在Python中,可以使用各种库和工具来清洗数据。下面是一些常用的方法:1. 数据去重:使用pandas库的`drop_duplicates()`函数可以去除重复的数据行。```pythonimport pandas as pddf = p
2023-09-12

怎么在Python中使用numpy清洗数据

这篇文章给大家介绍怎么在Python中使用numpy清洗数据,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。Python主要用来做什么Python主要应用于:1、Web开发;2、数据科学研究;3、网络爬虫;4、嵌入式应用
2023-06-14

如何用 Python 清洗数据?

在做数据分析之前,我们首先要明确数据分析的目标,然后 应用数据分析的思维,对目标进行细分,再采取相应的行动。

Python如何实现Excel数据的探索和清洗

这篇文章主要介绍了Python如何实现Excel数据的探索和清洗,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。python是什么意思Python是一种跨平台的、具有解释性、编
2023-06-14

pandas数据清洗如何实现删除

这篇文章主要介绍“pandas数据清洗如何实现删除”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“pandas数据清洗如何实现删除”文章能帮助大家解决问题。准备工作(导入库、导入数据)import p
2023-07-02

什么是数据清洗?

数据清洗是将原始数据转化为可分析的干净数据的过程,包括识别错误、不一致和缺失值并应用清洗技术(如数据转换、标准化、验证、补全和去重)。数据清洗工具包括编程语言、开源工具和商业软件。数据清洗的好处包括提高数据质量、简化分析、增强决策制定、节省成本和提高客户满意度。最佳实践包括明确定义数据需求、了解数据源、自动化流程、定期监控数据质量和与数据使用者合作。
什么是数据清洗?
2024-04-02

怎么在Python中使用Pandas进行数据清洗

怎么在Python中使用Pandas进行数据清洗?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。python的五大特点是什么python的五大特点:1.简单易学,
2023-06-14

pandas实现数据清洗有哪些方法

pandas实现数据清洗的方法有:1、缺失值处理;2、重复值处理;3、数据类型转换;4、异常值处理;5、数据规范化;6、数据筛选;7、数据聚合和分组;8、数据透视表等。详细介绍:1、缺失值处理,Pandas提供了多种处理缺失值的方法,对于缺
pandas实现数据清洗有哪些方法
2023-11-22

Python怎么利用Pandas与NumPy进行数据清洗

本文小编为大家详细介绍“Python怎么利用Pandas与NumPy进行数据清洗”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python怎么利用Pandas与NumPy进行数据清洗”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一
2023-06-30

一行 Python 代码实现数据清洗的18种方法

今天,我们就来学习如何用一行代码完成数据清洗的十八个小绝招。准备好,让我们一起化繁为简,成为数据清洗的高手!

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录