我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python绘制移动均线方法 含源代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python绘制移动均线方法 含源代码

上一篇《 Python绘制专业的K线图》,讲解了数据获取、K线图绘制及成交量绘制等内容。本篇将在上一篇的基础上,继续讲解移动均线的绘制。

1、获取数据

我们从恒有数金融数据社区,获取股票市场历史行,情数据。我们获取2021年3月1号至2021年6月1号,恒生电子(600570.SH)的日行情数据,并做简单处理,代码及执行结果如下。

加载取数与绘图所需的函数包


import pandas as pd
import datetime
from hs_udata import set_token,stock_quote_daily
from mpl_finance import candlestick_ohlc
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题

def GetData(stock_code,start,end):
    #stock_code:获取股票数据的股票代码
    #      start:开始日期
    #        end:结束日期
    date_start=datetime.datetime.strptime(start,'%Y-%m-%d')
    date_end  =datetime.datetime.strptime(end,'%Y-%m-%d')
    data = pd.DataFrame([])
    while date_start<date_end:
        # 获取日行情数据,接口说明见 https://udata.hs.net/datas/332/
        # adjust_way枚举值为:0-不复权,1-前复权,2-后复权,此处取前复权
        data_i = stock_quote_daily(en_prod_code=stock_code
                                   ,trading_date=date_start.strftime('%Y%m%d')
                                   ,adjust_way = 1)
        data=pd.concat([data,data_i],axis=0)      # 将行情数据按行拼接
        date_start+=datetime.timedelta(days=1)    # 日期变量自增
    # 返回行情数据
    return data
#1、获取行情数据

stock_code = "600570.SH"                        # 恒生电子 股票代码是600570.SH
start='2021-03-01'
end  ='2021-06-01'
set_token(token = 'xxxxxxxxxxxxxxxxxxxxxxxx')   # 注册恒有数之后,获取并替换token
data = GetData(stock_code,start,end)


#2、数据处理

data = data.loc[data.turnover_status=='交易']                            # 剔除非交易日
data_price = data[['trading_date','open_price','high_price','low_price'
                   ,'close_price','business_amount']]                    # 选取日期与高开低收价格
data_price.set_index('trading_date', inplace=True)                      # 将日期作为索引
data_price = data_price.astype(float)                                   # 将价格数据类型转为浮点数
# 将日期格式转为 candlestick_ohlc 可识别的数值
data_price['Date'] = list(map(lambda x:mdates.date2num(datetime.datetime.strptime(x,'%Y-%m-%d'))
                                ,data_price.index.tolist()))

data_price

2、计算移动均线


#3、计算均值
data_price['MA5']=data_price['close_price'].rolling(window=5).mean()
data_price['MA10']=data_price['close_price'].rolling(window=10).mean()
data_price['MA20']=data_price['close_price'].rolling(window=20).mean()
data_price
 title=

3、绘制K线及移动均线

将绘制移动均线的代码,添加至K线图绘制代码中;源代码及绘制图片如下:


#4、绘制图片
fig = plt.figure(figsize=(12,10))
grid = plt.GridSpec(12, 10, wspace=0.5, hspace=0.5)
#(1)绘制K线图

#K线数据

ohlc = data_price[['Date','open_price','high_price','low_price','close_price']]
ohlc.loc[:,'Date'] = range(len(ohlc))     # 重新赋值横轴数据,绘制K线图无间隔

#绘制K线
ax1 = fig.add_subplot(grid[0:8,0:12])   # 设置K线图的尺寸
candlestick_ohlc(ax1, ohlc.values.tolist(), width=.7
                 , colorup='red', colordown='green')
#(2)绘制均线

ax1.plot(range(len(data_price)), data_price['MA5']
         , color='red', lw=2, label='MA (5)')
ax1.plot(range(len(data_price)), data_price['MA10']
         , color='blue', lw=2, label='MA (10)')
ax1.plot(range(len(data_price)), data_price['MA20']
         , color='green', lw=2, label='MA (20)')
#设置标注
plt.title(stock_code,fontsize = 14)       # 设置图片标题
plt.ylabel('价 格(元)',fontsize = 14)   # 设置纵轴标题
plt.legend(loc='best')                    # 绘制图例
ax1.set_xticks([])                        # 日期标注在成交量中,故清空此处x轴刻度
ax1.set_xticklabels([])                   # 日期标注在成交量中,故清空此处x轴 

#(3)绘制成交量

#成交量数据
data_volume = data_price[['Date','close_price','open_price','business_amount']]
data_volume['color'] = data_volume.apply(lambda row: 1 if row['close_price'] >= row['open_price'] else 0, axis=1)        # 计算成交量柱状图对应的颜色,使之与K线颜色一致
data_volume.Date = ohlc.Date

 #绘制成交量
ax2 = fig.add_subplot(grid[8:10,0:12])  # 设置成交量图形尺寸
ax2.bar(data_volume.query('color==1')['Date']
        , data_volume.query('color==1')['business_amount']
        , color='r')                    # 绘制红色柱状图
ax2.bar(data_volume.query('color==0')['Date']
        , data_volume.query('color==0')['business_amount']
        , color='g')                    # 绘制绿色柱状图
plt.xticks(rotation=30) 
plt.xlabel('日 期',fontsize = 14)                               # 设置横轴标题

#修改横轴日期标注

date_list = ohlc.index.tolist()           # 获取日期列表
xticks_len = round(len(date_list)/(len(ax2.get_xticks())-1))      # 获取默认横轴标注的间隔
xticks_num = range(0,len(date_list),xticks_len)                   # 生成横轴标注位置列表
xticks_str = list(map(lambda x:date_list[int(x)],xticks_num))     # 生成正在标注日期列表
ax2.set_xticks(xticks_num)                                        # 设置横轴标注位置
ax2.set_xticklabels(xticks_str)                                   # 设置横轴标注日期
plt.show()


到此这篇关于Python绘制移动均线方法 含源代码的文章就介绍到这了,更多相关Python绘制移动均线内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python绘制移动均线方法 含源代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Android中贝塞尔曲线的绘制方法示例代码

贝塞尔曲线,很多人可能不太了解,什么叫做贝塞尔曲线呢?这里先做一下简单介绍:贝塞尔曲线也可以叫做贝济埃曲线或者贝兹曲线,它由线段与节点组成,节点是可拖动的支点,线段像可伸缩的皮筋。一般的矢量图形软件常利用贝塞尔曲线来精确画出曲
2022-06-06

干货丨Python接口测试自动化实战及代码示例:含get、post等方法

引言:年初参与到一个后台系统开发的项目中,里面涉及了很多接口,我做为项目组测试人员,需要对这些接口进行测试,一开始使用 postman 工具测试,很是方便。但随着接口数量的增加,不光要执行手动点击测试,而且,一旦接口参数变动,都重新更改接口
2023-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录