我的编程空间,编程开发者的网络收藏夹
学习永远不晚

图文详解Node V8引擎的内存和GC

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

图文详解Node V8引擎的内存和GC

  • 阶段二 并行多线程GC(代表:Parallel Scavenge, ParNew)

在多 CPU 环境中利用多条 GC 线程同时并行运行,从而垃圾回收的时间减少、用户线程停顿的时间也减少,这个算法也会STW,完全暂停其他所有的工作线程

  • 阶段三 多线程并发 concurrent GC(代表:CMS (Concurrent Mark Sweep) G1)

这里的并发是指:GC多线程执行可以和业务代码并发运行。

在前面的两个发展阶段的 GC 算法都会完全 STW,而在 concurrent GC 中,有部分阶段 GC 线程可以和业务代码并发运行,保证了更短的 STW 时间。但是这个模式就会存在标记错误,因为 GC 过程中可能有新对象进来,当然算法本身会修正和解决这个问题

上面的三个阶段并不代表 GC 一定是上面描述三种的其中一种。不同程序语言的 GC 根据不同需求采用多种算法组合实现。

三、v8 内存分区与GC

堆内存设计与GC设计是紧密相关的。V8 把堆内存分为几大区域,采用分代策略。

盗图:

image.png

  • 新生代(new-space 或 young-generation):空间小,分为了两个半空间(semi-space),其中的数据存活期短。
  • 老生代(old-space 或 old-generation):空间大,可增量,其中的数据存活期长
  • 大对象空间(large-object-space):默认超过256K的对象会在此空间下,下文解释
  • 代码空间(code-space):即时编译器(JIT)在这里存储已编译的代码
  • 元空间 (cell space):这个空间用于存储小的、固定大小的JavaScript对象,比如数字和布尔值。
  • 属性元空间 (property cell space):这个空间用于存储特殊的JavaScript对象,比如访问器属性和某些内部对象。
  • Map Space:这个空间用于存储用于JavaScript对象的元信息和其他内部数据结构,比如Map和Set对象。

3.1 分代策略:新生代和老生代

新老生代.png

在 Node.js 中,GC 采用分代策略,分为新、老生代区,内存数据大都在这两个区域。

3.1.1 新生代

新生代是一个小的、存储年龄小的对象、快速的内存池,分为了两个半空间(semi-space),一半的空间是空闲的(称为to空间),另一半的空间是存储了数据(称为from空间)。

当对象首次创建时,它们被分配到新生代 from 半空间中,它的年龄为1。当 from 空间不足或者超过一定大小数量之后,会触发 Minor GC(采用复制算法 Scavenge),此时,GC 会暂停应用程序的执行(STW,stop-the-world),标记(from空间)中所有活动对象,然后将它们整理连续移动到新生代的另一个空闲空间(to空间)中。最后原本的 from 空间的内存会被全部释放而变成空闲空间,两个空间就完成 fromto 的对换,复制算法是牺牲了空间换取时间的算法。

新生代的空间更小,所以此空间会更频繁的触发 GC。同时扫描的空间更小,GC性能消耗也更小、它的 GC 执行时间也更短。

每当一次 Minor GC 完成存活的对象年龄就+1,经历过多次Minor GC还存活的对象(年龄大于N),它们将被移动到老生代内存池中。

3.1.2 老生代

老生代是一个大的内存池,用于存储较长寿命的对象。老生代内存采用 标记清除(Mark-Sweep)标记压缩算法(Mark-Compact)。它的一次执行叫做 Mayor GC。当老生代中的对象占满一定比例时,即存活对象与总对象的比例超过一定的阈值,就会触发一次 标记清除标记压缩

因为它的空间更大,它的GC执行时间也更长,频率相对新生代更低。如果老生代完成 GC 回收之后空间还是不足,V8 就会从系统中申请更多内存。

可以手动执行 global.gc() 方法,设置不同参数,主动触发GC。 但是需要注意的是,默认情况下,Node.js 是禁用了此方法。如果要启用,可以通过启动 Node.js 应用程序时添加 --expose-gc 参数来开启,例如:

node --expose-gc app.js

V8 在老生代中主要采用了 Mark-SweepMark-Compact 相结合的方式进行垃圾回收。

Mark-Sweep 是标记清除的意思,它分为两个阶段,标记和清除。Mark-Sweep 在标记阶段遍历堆中的所有对象,并标记活着的对象,在随后的清除阶段中,只清除未被标记的对象。

Mark-Sweep 最大的问题是在进行一次标记清除回收后,内存空间会出现不连续的状态。这种内存碎片会对后续的内存分配造成问题,因为很可能出现需要分配一个大对象的情况,这时所有的碎片空间都无法完成此次分配,就会提前触发垃圾回收,而这次回收是不必要的。

为了解决 Mark-Sweep 的内存碎片问题,Mark-Compact 被提出来。Mark-Compact 是标记整理的意思,是在 Mark-Sweep 的基础上演进而来的。它们的差别在于对象在标记为死亡后,在整理过程中,将活着的对象往一端移动,移动完成后,直接清理掉边界外的内存。V8 也会根据一定逻辑,释放一定空闲的内存还给系统。

3.2 大对象空间 large object space

大对象会直接在大对象空间创建,并且不会移动到其它空间。那么到底多大的对象会直接在大对象空间创建,而不是在新生代 from 区中创建呢?查阅资料和源代码终于找到了答案。默认情况下是 256KV8 似乎并没有暴露修改命令,源码中的 v8_enable_hugepage 配置应该是打包的时候设定的。

chromium.googlesource.com/v8/v8.git/+…

 // There is a separate large object space for objects larger than
 // Page::kMaxRegularHeapObjectSize, so that they do not have to move during
 // collection. The large object space is paged. Pages in large object space
 // may be larger than the page size.

source.chromium.org/chromium/ch…

1.png

image.png

(1 << (18 - 1)) 的结果 256K
(1 << (19 - 1)) 的结果 256K
(1 << (21 - 1)) 的结果 1M(如果开启了hugPage)

四、V8 新老分区大小

4.1 老生代分区大小

在v12.x 之前:

为了保证 GC 的执行时间保持在一定范围内,V8 限制了最大内存空间,设置了一个默认老生代内存最大值,64位系统中为大约1.4G,32位为大约700M,超出会导致应用崩溃。

如果想加大内存,可以使用 --max-old-space-size 设置最大内存(单位:MB)

node --max_old_space_size=

在v12以后:

V8 将根据可用内存分配老生代大小,也可以说是堆内存大小,所以并没有限制堆内存大小。以前的限制逻辑,其实不合理,限制了 V8 的能力,总不能因为 GC 过程消耗的时间更长,就不让我继续运行程序吧,后续的版本也对 GC 做了更多优化,内存越来越大也是发展需要。

如果想要做限制,依然可以使用 --max-old-space-size 配置, v12 以后它的默认值是0,代表不限制。

参考文档:nodejs.medium.com/introducing…

4.2 新生代分区大小

新生代中的一个 semi-space 大小 64位系统的默认值是16M,32位系统是8M,因为有2个 semi-space,所以总大小是32M、16M。

--max-semi-space-size

--max-semi-space-size 设置新生代 semi-space 最大值,单位为MB。

此空间不是越大越好,空间越大扫描的时间就越长。这个分区大部分情况下是不需要做修改的,除非针对具体的业务场景做优化,谨慎使用。

--max-new-space-size

--max-new-space-size 设置新生代空间最大值,单位为KB(不存在)

有很多文章说到此功能,我翻了下 nodejs.org 网页中 v4 v6 v7 v8 v10的文档都没有看到有这个配置,使用 node --v8-options 也没有查到,也许以前的某些老版本有,而现在都应该使用 --max-semi-space-size

五、 内存分析相关API

5.1 v8.getHeapStatistics()

执行 v8.getHeapStatistics(),查看 v8 堆内存信息,查询最大堆内存 heap_size_limit,当然这里包含了新、老生代、大对象空间等。我的电脑硬件内存是 8G,Node版本16x,查看到 heap_size_limit 是4G。

{
  total_heap_size: 6799360,
  total_heap_size_executable: 524288,
  total_physical_size: 5523584,
  total_available_size: 4340165392,
  used_heap_size: 4877928,
  heap_size_limit: 4345298944,
  malloced_memory: 254120,
  peak_malloced_memory: 585824,
  does_zap_garbage: 0,
  number_of_native_contexts: 2,
  number_of_detached_contexts: 0
}

k8s 容器中查询 NodeJs 应用,分别查看了v12 v14 v16版本,如下表。看起来是本身系统当前的最大内存的一半。128M 的时候,为啥是 256M,因为容器中还有交换内存,容器内存实际最大内存限制是内存限制值 x2,有同等的交换内存。

所以结论是大部分情况下 heap_size_limit 的默认值是系统内存的一半。但是如果超过这个值且系统空间足够,V8 还是会申请更多空间。当然这个结论也不是一个最准确的结论。而且随着内存使用的增多,如果系统内存还足够,这里的最大内存还会增长。

容器最大内存heap_size_limit
4G2G
2G1G
1G0.5G
1.5G0.7G
256M256M
128M256M

5.2 process.memoryUsage

process.memoryUsage()
{
  rss: 35438592,
  heapTotal: 6799360,
  heapUsed: 4892976,
  external: 939130,
  arrayBuffers: 11170
}

通过它可以查看当前进程的内存占用和使用情况 heapTotalheapUsed,可以定时获取此接口,然后绘画出折线图帮助分析内存占用情况。以下是 Easy-Monitor 提供的功能:

image.png

建议本地开发环境使用,开启后,尝试大量请求,会看到内存曲线增长,到请求结束之后,GC触发后会看到内存曲线下降,然后再尝试多次发送大量请求,这样往复下来,如果发现内存一直在增长低谷值越来越高,就可能是发生了内存泄漏。

5.3 开启打印GC事件

使用方法

node --trace_gc app.js
// 或者
v8.setFlagsFromString('--trace_gc');
  • --trace_gc
[40807:0x148008000]   235490 ms: Scavenge 247.5 (259.5) -> 244.7 (260.0) MB, 0.8 / 0.0 ms  (average mu = 0.971, current mu = 0.908) task 
[40807:0x148008000]   235521 ms: Scavenge 248.2 (260.0) -> 245.2 (268.0) MB, 1.2 / 0.0 ms  (average mu = 0.971, current mu = 0.908) allocation failure 
[40807:0x148008000]   235616 ms: Scavenge 251.5 (268.0) -> 245.9 (268.8) MB, 1.9 / 0.0 ms  (average mu = 0.971, current mu = 0.908) task 
[40807:0x148008000]   235681 ms: Mark-sweep 249.7 (268.8) -> 232.4 (268.0) MB, 7.1 / 0.0 ms  (+ 46.7 ms in 170 steps since start of marking, biggest step 4.2 ms, walltime since start of marking 159 ms) (average mu = 1.000, current mu = 1.000) finalize incremental marking via task GC in old space requested
GCType <heapUsed before> (<heapTotal before>) -> <heapUsed after> (<heapTotal after>) MB

上面的 ScavengeMark-sweep 代表GC类型,Scavenge 是新生代中的清除事件,Mark-sweep 是老生代中的标记清除事件。箭头符号前是事件发生前的实际使用内存大小,箭头符号后是事件结束后的实际使用内存大小,括号内是内存空间总值。可以看到新生代中事件发生的频率很高,而后触发的老生代事件会释放总内存空间。

  • --trace_gc_verbose

展示堆空间的详细情况

v8.setFlagsFromString('--trace_gc_verbose');

[44729:0x130008000] Fast promotion mode: false survival rate: 19%
[44729:0x130008000]    97120 ms: [HeapController] factor 1.1 based on mu=0.970, speed_ratio=1000 (gc=433889, mutator=434)
[44729:0x130008000]    97120 ms: [HeapController] Limit: old size: 296701 KB, new limit: 342482 KB (1.1)
[44729:0x130008000]    97120 ms: [GlobalMemoryController] Limit: old size: 296701 KB, new limit: 342482 KB (1.1)
[44729:0x130008000]    97120 ms: Scavenge 302.3 (329.9) -> 290.2 (330.4) MB, 8.4 / 0.0 ms  (average mu = 0.998, current mu = 0.999) task 
[44729:0x130008000] Memory allocator,       used: 338288 KB, available: 3905168 KB
[44729:0x130008000] Read-only space,        used:    166 KB, available:      0 KB, committed:    176 KB
[44729:0x130008000] New space,              used:    444 KB, available:  15666 KB, committed:  32768 KB
[44729:0x130008000] New large object space, used:      0 KB, available:  16110 KB, committed:      0 KB
[44729:0x130008000] Old space,              used: 253556 KB, available:   1129 KB, committed: 259232 KB
[44729:0x130008000] Code space,             used:  10376 KB, available:    119 KB, committed:  12944 KB
[44729:0x130008000] Map space,              used:   2780 KB, available:      0 KB, committed:   2832 KB
[44729:0x130008000] Large object space,     used:  29987 KB, available:      0 KB, committed:  30336 KB
[44729:0x130008000] Code large object space,     used:      0 KB, available:      0 KB, committed:      0 KB
[44729:0x130008000] All spaces,             used: 297312 KB, available: 3938193 KB, committed: 338288 KB
[44729:0x130008000] Unmapper buffering 0 chunks of committed:      0 KB
[44729:0x130008000] External memory reported:  20440 KB
[44729:0x130008000] Backing store memory:  22084 KB
[44729:0x130008000] External memory global 0 KB
[44729:0x130008000] Total time spent in GC  : 199.1 ms
  • --trace_gc_nvp

每次GC事件的详细信息,GC类型,各种时间消耗,内存变化等

v8.setFlagsFromString('--trace_gc_nvp');

[45469:0x150008000]  8918123 ms: pause=0.4 mutator=83.3 gc=s reduce_memory=0 time_to_safepoint=0.00 heap.prologue=0.00 heap.epilogue=0.00 heap.epilogue.reduce_new_space=0.00 heap.external.prologue=0.00 heap.external.epilogue=0.00 heap.external_weak_global_handles=0.00 fast_promote=0.00 complete.sweep_array_buffers=0.00 scavenge=0.38 scavenge.free_remembered_set=0.00 scavenge.roots=0.00 scavenge.weak=0.00 scavenge.weak_global_handles.identify=0.00 scavenge.weak_global_handles.process=0.00 scavenge.parallel=0.08 scavenge.update_refs=0.00 scavenge.sweep_array_buffers=0.00 background.scavenge.parallel=0.00 background.unmapper=0.04 unmapper=0.00 incremental.steps_count=0 incremental.steps_took=0.0 scavenge_throughput=1752382 total_size_before=261011920 total_size_after=260180920 holes_size_before=838480 holes_size_after=838480 allocated=831000 promoted=0 semi_space_copied=4136 nodes_died_in_new=0 nodes_copied_in_new=0 nodes_promoted=0 promotion_ratio=0.0% average_survival_ratio=0.5% promotion_rate=0.0% semi_space_copy_rate=0.5% new_space_allocation_throughput=887.4 unmapper_chunks=124
[45469:0x150008000]  8918234 ms: pause=0.6 mutator=110.9 gc=s reduce_memory=0 time_to_safepoint=0.00 heap.prologue=0.00 heap.epilogue=0.00 heap.epilogue.reduce_new_space=0.04 heap.external.prologue=0.00 heap.external.epilogue=0.00 heap.external_weak_global_handles=0.00 fast_promote=0.00 complete.sweep_array_buffers=0.00 scavenge=0.50 scavenge.free_remembered_set=0.00 scavenge.roots=0.08 scavenge.weak=0.00 scavenge.weak_global_handles.identify=0.00 scavenge.weak_global_handles.process=0.00 scavenge.parallel=0.08 scavenge.update_refs=0.00 scavenge.sweep_array_buffers=0.00 background.scavenge.parallel=0.00 background.unmapper=0.04 unmapper=0.00 incremental.steps_count=0 incremental.steps_took=0.0 scavenge_throughput=1766409 total_size_before=261207856 total_size_after=260209776 holes_size_before=838480 holes_size_after=838480 allocated=1026936 promoted=0 semi_space_copied=3008 nodes_died_in_new=0 nodes_copied_in_new=0 nodes_promoted=0 promotion_ratio=0.0% average_survival_ratio=0.5% promotion_rate=0.0% semi_space_copy_rate=0.3% new_space_allocation_throughput=888.1 unmapper_chunks=124

5.4 内存快照

const { writeHeapSnapshot } = require('node:v8');
v8.writeHeapSnapshot()

打印快照,将会STW,服务停止响应,内存占用越大,时间越长。此方法本身就比较费时间,所以生成的过程预期不要太高,耐心等待。

注意:生成内存快照的过程,会STW(程序将暂停)几乎无任何响应,如果容器使用了健康检测,这时无法响应的话,容器可能被重启,导致无法获取快照,如果需要生成快照、建议先关闭健康检测。

兼容性问题:此 API arm64 架构不支持,执行就会卡住进程 生成空快照文件 再无响应, 如果使用库 heapdump,会直接报错:

(mach-o file, but is an incompatible architecture (have (arm64), need (x86_64))

API 会生成一个 .heapsnapshot 后缀快照文件,可以使用 Chrome 调试器的“内存”功能,导入快照文件,查看堆内存具体的对象数和大小,以及到GC根结点的距离等。也可以对比两个不同时间快照文件的区别,可以看到它们之间的数据量变化。

六、利用内存快照分析内存泄漏

一个 Node 应用因为内存超过容器限制经常发生重启,通过容器监控后台看到应用内存的曲线是一直上升的,那应该是发生了内存泄漏。

使用 Chrome 调试器对比了不同时间的快照。发现对象增量最多的是闭包函数,继而展开查看整个列表,发现数据量较多的是 mongo 文档对象,其实就是闭包函数内的数据没有被释放,再通过查看 Object 列表,发现同样很多对象,最外层的详情显示的是 MongooseConnection 对象。

image.png

image.png

到此为止,已经大概定位到一个类的 mongo 数据存储逻辑附近有内存泄漏。

再看到 Timeout 对象也比较多,从 GC 根节点距离来看,这些对象距离非常深。点开详情,看到这一层层的嵌套就定位到了代码中准确的位置。因为那个类中有个定时任务使用 setInterval 定时器去分批处理一些不紧急任务,当一个 setInterval 把事情做完之后就会被 clearInterval 清除。

image.pngimage.png

泄漏解决和优化

通过代码逻辑分析,最终找到了问题所在,是 clearInterval 的触发条件有问题,导致定时器没有被清除一直循环下去。定时器一直执行,这段代码和其中的数据还在闭包之中,无法被 GC 回收,所以内存会越来越大直至达到上限崩溃。

这里使用 setInterval 的方式并不合理,顺便改成了利用 for await 队列顺序执行,从而达到避免同时间大量并发的效果,代码也要清晰许多。由于这块代码比较久远,就不考虑为啥当初使用 setInterval 了。

发布新版本之后,观察了十多天,内存平均保持在100M出头,GC 正常回收临时增长的内存,呈现为波浪曲线,没有再出现泄漏。

image.png

至此利用内存快照,分析并解决了内存泄漏。当然实际分析的时候要曲折一点,这个内存快照的内容并不好理解、并不那么直接。快照数据的展示是类型聚合的,需要通过看不同的构造函数,以及内部的数据详情,结合自己的代码综合分析,才能找到一些线索。 比如从当时我得到的内存快照看,有大量数据是 闭包、string、mongo model类、Timeout、Object等,其实这些增量的数据都是来自于那段有问题的代码,并且无法被 GC 回收。

六、 最后

不同的语言 GC 实现都不一样,比如 JavaGo

Java:了解 JVM (对应Node V8)的知道,Java 也采用分代策略,它的新生代中还存在一个 eden 区,新生的对象都在这个区域创建。而 V8 新生代没有 eden 区。

Go:采用标记清除,三色标记算法

不同的语言的 GC 实现不同,但是本质上都是采用不同算法组合实现。在性能上,不同的组合,带来的各方面性能效率不一样,但都是此消彼长,只是偏向不同的应用场景而已。

以上就是图文详解Node V8引擎的内存和GC的详细内容,更多请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

图文详解Node V8引擎的内存和GC

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

图文详解Node V8引擎的内存和GC

本篇文章带大家深入了解NodeJS V8引擎的内存和垃圾回收器(GC),希望对大家有所帮助!
2023-05-14

详解MySQL InnoDB存储引擎的内存管理

存储引擎之内存管理 在InnoDB存储引擎中,数据库中的缓冲池是通过LRU(Latest Recent Used,最近最少使用)算法来进行管理的,即最频繁使用的页在LRU列表的最前段,而最少使用的页在LRU列表的尾端,当缓冲池不能存放新读取
2022-05-13

MySQL基础篇(05):逻辑架构图解和InnoDB存储引擎详解

本文源码:GitHub·点这里 || GitEE·点这里一、MySQL逻辑架构1、逻辑架构图基于下面的逻辑架构图,可以大致熟悉MySQL各个架构组件之间的协同工作关系。很经典的C/S架构风格,即客户端/服务端模式。2、分层描述客户端连接通常会进行连接池管理,连
MySQL基础篇(05):逻辑架构图解和InnoDB存储引擎详解
2018-06-02

Sphinx全文搜索引擎的架构与工作原理详解(Sphinx搜索引擎的内部结构和工作机制是怎样的?)

Sphinx全文搜索引擎采用分布式架构,包括索引服务器、搜索服务器和代理服务器。索引建立过程涉及词项提取、分词和索引创建。搜索查询处理包括在倒排索引中查找匹配文档。结果返回包括从索引服务器获取内容并排序。Sphinx特点包括可伸缩性、高性能、相关性、灵活性、可配置性等,适用于电子商务搜索、网站搜索、数据挖掘等场景。
Sphinx全文搜索引擎的架构与工作原理详解(Sphinx搜索引擎的内部结构和工作机制是怎样的?)
2024-04-02

Android位图(图片)加载引入的内存溢出问题详细解析

Android在加载大背景图或者大量图片时,常常致使内存溢出,下面这篇文章主要给大家介绍了关于Android位图(图片)加载引入的内存溢出问题的相关资料,需要的朋友可以参考下
2022-12-26

详解Java数组的一维和二维讲解和内存显示图

这篇文章主要介绍了Java数组的一维和二维讲解和内存显示图,数组就相当于一个容器,存放相同类型数据的容器。而数组的本质上就是让我们能"批量"创建相同类型的变量,需要的朋友可以参考下
2023-05-19

Solr搜索引擎的核心架构及工作原理详解(Solr搜索引擎的内部结构和工作机制是怎样的?)

Solr搜索引擎基于ApacheLucene构建,具有高性能、可扩展性和容错性。其核心架构包括模式、核心、处理器、索引、文档、查询、结果和分面。Solr的工作原理包含索引构建、查询解析、查询优化、查询执行、结果排序、分面聚合等步骤。Solr具备高性能、可扩展性、容错性、可定制性和社区支持等优势,使其广泛用于各种应用程序中。
Solr搜索引擎的核心架构及工作原理详解(Solr搜索引擎的内部结构和工作机制是怎样的?)
2024-04-02

【Java基础教程】(七)面向对象篇 · 第一讲:上干货!面向对象的特性、类与对象、内存结构引用分析、垃圾收集器 GC处理、封装性详解、构造方法、匿名对象、简单 Java 类~

Java基础教程之面向对象 · 第一讲 🍉 篇章介绍本节学习目标1️⃣ 面向对象的三个特性2️⃣ 类与对象2.1 基本概念2.2 定义 3️⃣ 引用分析🔍 关于`垃圾收集器 GC`处理的介绍
2023-08-19

编程热搜

目录