我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python numpy生成矩阵基础用法实例代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python numpy生成矩阵基础用法实例代码

1、numpy.array() 可以把列表转换为矩阵

numpy.array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, like=None)

    value = [[1, 2, 3], [1, 2, 3]]
    print(value)
    x = np.array(value)
    print(x)

[[1, 2, 3], [1, 2, 3]]
[[1 2 3]
 [1 2 3]]

2、numpy.arange() 生成一个向量

可设置三个参数,第一个为开始,第二个为结束,最后一个为步长,可省略开始与步长,默认从0开始,取值范围左闭右开

numpy.arange([start, ]stop, [step, ]dtype=None, *, like=None)

中括号的意思表示这个参数可以省略

    x = np.arange(12)
    print(x)
    y = np.arange(10, 12)
    print(y)
    z = np.arange(10, 12, 2)
    print(z)

[ 0  1  2  3  4  5  6  7  8  9 10 11]
[10 11]
[10]

3、numpy.ones() 生成一个全是1的矩阵, 里面填入矩阵范围

numpy.ones(shape, dtype=None, order='C', *, like=None)

x = np.ones((3, 4))
print(x)

[[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]]

 这里提一嘴输出里有点是因为dtype属性默认为float,如果改成int就会没有,下面的函数同理

    z = np.ones((3, 4), dtype=int)
    print(z)

[[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]]

4、numpy.zeros() 生成一个全是0的矩阵, 里面填入矩阵范围

numpy.zeros(shape, dtype=float, order='C', *, like=None)

    x = np.zeros((3, 4))
    print(x)

[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]

5、numpy.eye()  可填入两个参数分别代表行和列,也可只填一个参数,即为方阵

numpy.eye(N, M=None, k=0, dtype=<class 'float'>, order='C', *, like=None)

    x = np.eye(3)
    print(x)
    y = np.eye(3, 4)
    print(y)

[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]]

6、numpy.empty() 返回一个没有经过初始化的一个矩阵

numpy.empty(shape, dtype=float, order='C', *, like=None)

    x = np.empty((3, 4))
    print(x)

[[6.23042070e-307 2.22523004e-307 1.24610994e-306 1.60219035e-306]
 [1.24611674e-306 2.22522597e-306 1.33511969e-306 1.39071021e-307]
 [1.78018403e-306 1.78018403e-306 8.34426464e-308 2.22522596e-306]]

7、numpy.linspace  返回在指定的范围内确定个数的等间距的一组数的向量

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)

可以看到默认是50个

    X = numpy.linspace(1, 10, 10)
    print(X)
    x = numpy.linspace(1, 50)
    print(x)

[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.]
[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.
 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50.]

更多的方法以及详细内容可以移步Routines — NumPy v1.23.dev0 Manual

补充:矩阵的逆矩阵

若两个矩阵A / B满足: AB = BA = E (E为单位矩阵). 则称A与B互为逆矩阵.

单位矩阵E: 主对角线为1, 其他元素都为0.

矩阵求逆的API:

mi = m.I  
mi = np.linalg.inv(m)

矩阵求逆时, 若把方阵推广到非方阵, 则称为矩阵的广义逆矩阵.

案例: 求斐波那契数列

x      1 1   1 1   1 1   
      1 0   1 0   1 0  
----------------------------------
1 1   2 1   3 2   5 3
1 0   1 1   2 1   3 2  ...

m = np.mat('1 1; 1 0')
for i in range(1, 30):
    print((m**i)[0,1], end=' ')
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 
17711 28657 46368 75025 121393 196418 317811 514229

总结

到此这篇关于Python numpy生成矩阵基础用法的文章就介绍到这了,更多相关Python numpy生成矩阵内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python numpy生成矩阵基础用法实例代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录