我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python的import机制如何实现

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python的import机制如何实现

本篇内容主要讲解“python的import机制如何实现”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python的import机制如何实现”吧!

import 机制功能

Python 的 import 机制基本上可以切分为三个不同的功能:

  • Python运行时的全局模块池的维护和搜索;

  • 解析与搜索模块路径的树状结构;

  • 对不同文件格式的模块执行动态加载机制;

尽管 import 的表现形式千变万化,但是都可以归结为:import x.y.z 的形式,当然 import sys 也可以看成是 x.y.z 的一种特殊形式。而诸如 from、as 与 import 的结合,实际上同样会进行 import x.y.z 的动作,只是最后在当前名字空间中引入的符号各有不同。

然后导入模块,虚拟机会调用 __import__,那么我们就来看看这个函数长什么样子。

static PyObject *builtin___import__(PyObject *self, PyObject *args, PyObject *kwds){    static char *kwlist[] = {"name", "globals", "locals", "fromlist",                             "level", 0};    //初始化globals、fromlist都为NULL    PyObject *name, *globals = NULL, *locals = NULL, *fromlist = NULL;    int level = 0;//表示默认绝对导入      //从PyTupleObject中解析出需要的信息    if (!PyArg_ParseTupleAndKeywords(args, kwds, "U|OOOi:__import__",                    kwlist, &name, &globals, &locals, &fromlist, &level))        return NULL;    //导入模块    return PyImport_ImportModuleLevelObject(name, globals, locals,                                            fromlist, level);}

里面有一个PyArg_ParseTupleAndKeywords函数,我们需要提一下,它在虚拟机中是一个被广泛使用的函数,原型如下:

//Python/getargs.cint PyArg_ParseTupleAndKeywords(PyObject *, PyObject *,                                const char *, char **, ...);

这个函数的作用是参数解析,负责将 args 和 kwds 中所包含的所有对象(指针)按指定的格式 format 解析成各种目标对象,可以是 Python 的对象,例如 PyListObject、PyLongObject,也可以是 C 的原生对象。

我们知道这个 builtin__import__ 里面的参数 args 指向一个 PyTupleObject ,包含了 import 函数运行所需要的参数和信息,它是虚拟机在执行 IMPORT_NAME 指令的时候打包产生的。

然而在这里,虚拟机进行了一个逆动作,将打包后的这个 PyTupleObject 拆开,重新获得当初的参数。Python 在自身的实现中大量使用了这样的打包、拆包策略,使得可变数量的对象能够很容易地在函数之间传递。

该系列完结后,会介绍如何用 C 给 Python 写扩展,到时候会剖析这个函数的用法。

在完成了对参数的拆包动作之后,会进入 PyImport_ImportModuleLevelObject ,这个我们在 import_name 中已经看到了,当然它内部也是调用了 __import__。

另外每个包和模块都有一个__name__和__path__属性。

import numpy as npimport numpy.coreimport sixprint(np.__name__, np.__path__) """numpy ['C:\\python38\\lib\\site-packages\\numpy']"""print(np.core.__name__, np.core.__path__)"""numpy.core ['C:\\python38\\lib\\site-packages\\numpy\\core']"""print(six.__name__, six.__path__) """six []"""

name__就是模块名或者包名,如果是包下面的包或者模块,那么就是包名.包名或者包名.模块名;至于__path__则是包所在的路径,对于模块而言, __path 为空列表。

此外还有一个 file 属性,对于模块而言就是其自身的完整路径;对于包而言则分两种情况,如果包内部存在 __init__.py 文件,那么得到的就是 __init__.py 文件的完整路径,没有则为 None。

下面来看一下不同的导入方式对应的字节码,然后在虚拟机的层面来理解这些导入方式。

单模块导入

以一个简单的模块导入为例:

import sys"""  0 LOAD_CONST               0 (0)  2 LOAD_CONST               1 (None)  4 IMPORT_NAME              0 (sys)  6 STORE_NAME               0 (sys)  8 LOAD_CONST               1 (None) 10 RETURN_VALUE"""

这是我们一开始考察的例子,现在我们已经很清楚地了解了 IMPORT_NAME 的行为。在 IMPORT_NAME 指令的最后,虚拟机会将 PyModuleObject对象(指针)压入到运行时栈,随后会将 <"sys", PyModuleObject *> 存放到当前的 local名字空间中。

级联导入

import sklearn.linear_model.ridge"""  0 LOAD_CONST               0 (0)  2 LOAD_CONST               1 (None)  4 IMPORT_NAME              0 (sklearn.linear_model.ridge)  6 STORE_NAME               1 (sklearn)  8 LOAD_CONST               1 (None) 10 RETURN_VALUE"""

如果是级联导入,那么 IMPORT_NAME 的指令参数则是完整的路径信息,该指令的内部将解析这个路径,并为 sklearn, sklearn.linear_model, sklearn.linear_model.ridge都创建一个 PyModuleObject 对象,这三者都存在于 sys.modules 里面。

但是我们看到 STORE_NAME 是 sklearn,表示只有 sklearn 这个符号暴露在了当前模块的 local 空间里面。可为什么是sklearn呢?难道不应该是 sklearn.linear_model.ridge 吗?

其实经过我们之前的分析这一点已经不再是问题了,因为 import sklearn.linear_model.ridge并不是说导入一个模块或包叫做 sklearn.linear_model.ridge,而是先导入 sklearn,然后把 linear_model 放在 sklearn 的属性字典里面,再把 ridge 放在 linear_model 的属性字典里面。

同理 sklearn.linear_model.ridge 代表的是先从 local 空间里面找到 sklearn,再从 sklearn 的属性字典中找到 linear_model,然后在 linear_model 的属性字典里面找到ridge。因为 linear_model 和 ridge 已经在相应的属性字典里面,我们通过 sklearn 一级一级往下找是可以找到的,因此只需要将符号 skearn 暴露给 local 空间即可。

或者说暴露 sklearn.linear_model.ridge 本身就是不合理的,因为这表示导入一个名字就叫做 sklearn.linear_model.ridge 的模块或者包,但显然不存在。而即便我们创建了这样的一个模块或包,由于 Python 的语法解析规范依旧不会得到想要的结果。不然的话,假设 import test_import.a,那是导入名为 test_import.a 的模块或包呢?还是导入 test_import 下的 a 呢?

也正如我们之前分析的 test_import.a,我们在导入 test_import.a 的时候,会把 test_import 加载进来,然后把 a 加到 test_import 的属性字典里面,最后只需要把 test_import 返回即可。

因为通过 test_import 可以找到 a,或者说 test_import.a 代表的含义就是从 test_import 的属性字典里面获取 a,所以 import test_import.a 必须要返回 test_import,而且只需返回 test_import。

至于 sys.modules 里面虽然存在字符串名为 "test_import.a"的 key 的,但这是为了避免重复加载所采取的策略,它依旧表示从 test_import 的属性字典里面获取 a。

import pandas.coreprint(pandas.DataFrame({"a": [1, 2, 3]}))"""   a0  11  22  3"""# 所以通过 pandas.DataFrame 是可以调用的

导入 pandas.core 会先导入 pandas,也就是执行 pandas 内部的 init 文件。虽然 sys.modules 里面同时有 "pandas" 和 "pandas.core",但是暴露在 local 空间的只有 pandas,所以调用 pandas.DataFrame 是完全合理的。至于 pandas.core 显然它无法暴露,因为这不符合 Python 的变量命名规范,变量的名称里面不能出现小数点,它只是单纯地表示从 pandas 的属性字典中加载 core。

from & import

from sklearn.linear_model import ridge"""  0 LOAD_CONST               0 (0)  2 LOAD_CONST               1 (('ridge',))  4 IMPORT_NAME              0 (sklearn.linear_model)  6 IMPORT_FROM              1 (ridge)  8 STORE_NAME               1 (ridge) 10 POP_TOP 12 LOAD_CONST               2 (None) 14 RETURN_VALUE"""

注意此时的 2 LOAD_CONST 不再是 None 了,而是一个元组,虚拟机将 ridge 放到了当前模块的 local 空间中。并且 sklearn.linear_model 和 sklearn 都被导入了,存在 sys.modules 里面。

但是 sklearn 却并不在当前 local 空间中,尽管它被创建了,但是又被隐藏了。IMPORT_NAME 是 sklearn.linear_model,也表示导入 sklearn,然后把 sklearn 下面的 linear_model 加入到 sklearn 的属性字典里面。

而之所以 sklearn 没在 local 空间里面,可以这样理解。当只出现 import 的时候,那么我们必须从头开始一级一级向下调用,所以顶层的包必须加入到 local 空间里面。但这里通过 from ... import ...把 ridge 导出了,此时 ridge 已经指向了 sklearn 下面的 linear_model 下面的 ridge,那么就不需要 sklearn 了,或者说 sklearn 就没必要暴露在 local 空间里面了,但它确实被导入进来了。

并且 sys.modules 里面也不存在 "ridge"这个key,存在的是 "sklearn.linear_model.ridge",暴露给 local空间的符号是 ridge。

所以正如上面所说,不管什么导入,都可以归结为 import x.y.z 的形式,只是暴露出来的符号不同罢了。

import & as

import sklearn.linear_model.ridge as xxx"""  0 LOAD_CONST               0 (0)  2 LOAD_CONST               1 (None)  4 IMPORT_NAME              0 (sklearn.linear_model.ridge)  6 IMPORT_FROM              1 (linear_model)  8 ROT_TWO 10 POP_TOP 12 IMPORT_FROM              2 (ridge) 14 STORE_NAME               3 (xxx) 16 POP_TOP 18 LOAD_CONST               1 (None) 20 RETURN_VALUE""

这个和上面的 from & import 类似,"sklearn", "sklearn.linear_model", "sklearn.linear_model.ridge" 都在 sys.modules 里面。但是我们加上了 as xxx,那么这个 xxx 就直接指向了 sklearn 下面的 linear_model 下面的 ridge,此时就不需要 sklearn 了。

因此只有 xxx 暴露在了当前模块的 local空间里面,而 sklearn 虽然也被导入了,但它只在 sys.modules 里面,没有暴露给当前模块的 local 空间。

from & import & as

from sklearn.linear_model import ridge as xxx

这个我想连字节码都不需要贴了,和之前的 from & import 一样,只是最后暴露给 local 空间的 ridge 变成了我们自己指定的 xxx。

与module对象有关的名字空间问题

同函数、类一样,每个 PyModuleObject 也有自己的名字空间。一个模块不能直接访问另一个模块的内容,尽管模块内部的作用域比较复杂,比如:遵循 LEGB 规则,但是模块与模块之间的划分则是很明显的。

# test1.pyname = "古明地觉"def print_name():    return name# test2.pyfrom test1 import name, print_namename = "古明地恋"print(print_name())  # 古明地觉

执行 test2.py 之后,发现打印的依旧是"古明地觉"。我们说 Python 是根据 LEGB 规则进行查找,而 print_name 函数里面没有 name,那么去外层找。test2.py 里面的 name 是"古明地恋",但是打印的依旧是 test1.py 里面的 "古明地觉"。为什么?

还是那句话,模块与模块之间的作用域划分的非常明显,print_name 是 test1.py 里面的函数,所以在返回 name 的时候,只会从 test1.py 中搜索,无论如何都是不会跳过test1.py、跑到 test2.py 里面的。

再来看个例子:

# test1.pyname = "古明地觉"nicknames = ["小五", "少女觉"]# test2.pyimport test1test1.name = "❤古明地觉❤"test1.nicknames = ["觉大人"]from test1 import name, nicknamesprint(name)  # ❤古明地觉❤print(nicknames)  # ['觉大人']

此时打印的结果变了,很简单,这里是直接把 test1 里面的变量修改了。因为这种方式,相当于直接修改 test1 的属性字典。那么后续再导入的时候,打印的就是修改之后的值。

# test1.pyname = "古明地觉"nicknames = ["小五", "少女觉"]# test2.pyfrom test1 import name, nicknamesname = "古明地恋"nicknames.remove("小五")from test1 import name, nicknamesprint(name)  # 古明地觉print(nicknames)  # ["少女觉"]

如果是 from test1 import name, nicknames,那么相当于在当前的 local空间中新创建变量 name 和 nicknames,它们和 test1 中的 name 和 nicknames 指向相同的对象。

name = "古明地觉" 相当于重新赋值了,所以不会影响test1里的 name;而 nicknames.remove 则是在本地进行修改,所以会产生影响。

到此,相信大家对“python的import机制如何实现”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python的import机制如何实现

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python的import机制如何实现

本篇内容主要讲解“python的import机制如何实现”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python的import机制如何实现”吧!import 机制功能Python 的 impo
2023-06-30

Python的import 机制中如何实现远程导入模块

本篇文章为大家展示了Python的import 机制中如何实现远程导入模块,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。所谓的模块导入,是指在一个模块中使用另一个模块的代码的操作,它有利于代码的复用
2023-06-02

Python如何import文件夹下的文件(实现方法)

Python的import包含文件功能就跟PHP的include类似,但更确切的说应该更像是PHP中的require,因为Python里的import只要目标不存在就报错程序无法往下执行。要包含目录里的文件,PHP中只需要给对路径就OK。P
2022-06-04

checkpoint机制如何实现

这篇文章主要讲解了“checkpoint机制如何实现”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“checkpoint机制如何实现”吧!checkpoint 机制的具体实现我们都知道为了优化
2023-07-05

java的反射机制如何实现

Java的反射机制是指在运行时动态获取和操作类的相关信息的能力。通过反射,可以在运行时获取类的属性、方法、构造函数等信息,还可以动态调用方法、获取和设置属性的值。Java的反射机制是通过`java.lang.reflect`包中的类和接口来
2023-08-31

Python中import是如何工作的

这篇“Python中import是如何工作的”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python中import是如何工
2023-07-06

ahooks控制时机的hook如何实现

本篇内容主要讲解“ahooks控制时机的hook如何实现”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“ahooks控制时机的hook如何实现”吧!Function Component VS Cl
2023-07-02

java反射机制是如何实现的

Java反射机制是通过Java的`java.lang.reflect`包中的类和接口来实现的。该包中包含了一些重要的类,如`Class`、`Method`、`Field`等,它们提供了对类的结构、方法和字段的访问和操作。Java反射机制的实
2023-10-08

如何用C语言实现Python的面向对象的机制

本篇内容主要讲解“如何用C语言实现Python的面向对象的机制”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“如何用C语言实现Python的面向对象的机制”吧!本文主要介绍的是如何用C语言实现Py
2023-06-17

如何理解Spring AOP的实现机制

这篇文章将为大家详细讲解有关如何理解Spring AOP的实现机制,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。AOP(Aspect Orient Programming),一般称为面向切面
2023-06-16

Linux中如何实现poll机制

这篇文章给大家分享的是有关Linux中如何实现poll机制的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。所有的系统调用,基于都可以在它的名字前加上“sys_”前缀,这就是它在内核中对应的函数。比如系统调用open
2023-06-12

如何实现Redis的LRU缓存机制

这篇文章给大家分享的是有关如何实现Redis的LRU缓存机制的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。前言最近在逛博客的时候看到了有关Redis方面的面试题,其中提到了Redis在内存达到最大限制的时候会使用
2023-06-14

Python+matplotlib如何实现饼图的绘制

这篇文章主要介绍Python+matplotlib如何实现饼图的绘制,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一、整理数据关于cnboo1.xlsx,我放在我的码云里,需要的朋友自行下载:cnboo1.xlsxf
2023-06-29

python实现事务机制的方法

这篇文章将为大家详细讲解有关python实现事务机制的方法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。python的五大特点是什么python的五大特点:1.简单易学,开发程序时,专注的是解决问题,而不
2023-06-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录