我的编程空间,编程开发者的网络收藏夹
学习永远不晚

详解kafka中的消息分区分配算法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

详解kafka中的消息分区分配算法

背景

kafka有分区机制,一个主题topic在创建的时候,会设置分区。如果只有一个分区,那所有的消费者都订阅的是这一个分区消息;如果有多个分区的话,那消费者之间又是如何分配的呢?

分配算法

RangeAssignor

定义

Kafka默认采⽤RangeAssignor的分配算法。

RangeAssignor策略的原理是按照消费者总数和分区总数进⾏整除运算来获得⼀个跨度,然 后将分区按照跨度进⾏平均分配,以保证分区尽可能均匀地分配给所有的消费者。对于每⼀个 Topic,RangeAssignor策略会将消费组内所有订阅这个Topic的消费者按照名称的字典序排序,然 后为每个消费者划分固定的分区范围,如果不够平均分配,那么字典序靠前的消费者会被多分配 ⼀个分区。

这种分配⽅式明显的⼀个问题是随着消费者订阅的Topic的数量的增加,不均衡的问题会越来 越严重,⽐如上图中4个分区3个消费者的场景,C0会多分配⼀个分区。如果此时再订阅⼀个分区 数为4的Topic,那么C0⼜会⽐C1、C2多分配⼀个分区,这样C0总共就⽐C1、C2多分配两个分区 了,⽽且随着Topic的增加,这个情况会越来越严重。

源码分析

public class RangeAssignor extends AbstractPartitionAssignor {
    ....
    @Override 
    public Map> assign(Map partitionsPerTopic, Map subscriptions) { 
        // 1. 获取每个topic被多少个consumer订阅了 
        Map<String,List<String>> consumersPerTopic = consumersPerTopic(subscriptions); 
        // 2. 存储最终的分配⽅案 
        Map<String,List<String>> assignment = new HashMap<>(); 
        for (String memberId : subscriptions.keySet()) 
            assignment.put(memberId, new ArrayList()); 
        for (Map.Entry> topicEntry : consumersPerTopic.entrySet()) { 
            String topic = topicEntry.getKey(); 
            List consumersForTopic = topicEntry.getValue(); 
            // 3. 每个topic的partition数量 
            Integer numPartitionsForTopic = partitionsPerTopic.get(topic); 
            if (numPartitionsForTopic == null) 
            continue; 
            Collections.sort(consumersForTopic); 
            // 4. 表示平均每个consumer会分配到多少个partition 
            int numPartitionsPerConsumer = numPartitionsForTopic / consumersForTopic.size(); 
            // 5. 平均分配后还剩下多少个partition未被分配 
            int consumersWithExtraPartition = numPartitionsForTopic % consumersForTopic.size(); 
            List partitions = AbstractPartitionAssignor.partitions(topic, numPartitionsForTopic); 
            // 6. 这⾥是关键点,分配原则是将未能被平均分配的partition分配到前 consumersWithExtraPartition个consumer
            for (int i = 0, n = consumersForTopic.size(); i < n; i++) { 
                int start = numPartitionsPerConsumer * i + Math.min(i, consumersWithExtraPartition); 
                int length = numPartitionsPerConsumer + (i + 1 > consumersWithExtraPartition ? 0 : 1); assignment.get(consumersForTopic.get(i)).addAll(partitions.subList(start, start + length)); 
                } 
            } 
            return assignment; 
    }
}

场景

可以完全平均分配

无法完全平均分配,排序靠前分的更多

消费者数量大于分区数量,排名靠前先分得,排名靠后未分得分区

RoundRobinAssignor

定义

RoundRobinAssignor的分配策略是将消费组内订阅的所有Topic的分区及所有消费者进⾏排序后尽 量均衡的分配(RangeAssignor是针对单个Topic的分区进⾏排序分配的)。如果消费组内,消费者订阅 的Topic列表是相同的(每个消费者都订阅了相同的Topic),那么分配结果是尽量均衡的(消费者之间 分配到的分区数的差值不会超过1)。

源码分析

package org.apache.kafka.clients.consumer; 
public class RoundRobinAssignor extends AbstractPartitionAssignor { 
@Override 
public Map> assign(Map partitionsPerTopic, Map subscriptions) { 
        <Map> assignment = new HashMap<>(); 
        for (String memberId : subscriptions.keySet()) assignment.put(memberId, new ArrayList()); // 1. 环状链表,存储所有的consumer,⼀次迭代完之后⼜会回到原点 
        CircularIterator assigner = new CircularIterator<> (Utils.sorted(subscriptions.keySet())); // 2. 获取所有订阅的topic的partition总数 for (TopicPartition partition : allPartitionsSorted(partitionsPerTopic, subscriptions)) { 
        final String topic = partition.topic(); 
        while (!subscriptions.get(assigner.peek()).topics().contains(topic)) 
            assigner.next(); 
            assignment.get(assigner.next()).add(partition); 
        }
        return assignment; 
    } 
.... }

场景

无法完全平均分配,排序靠前分的更多

StickyAssignor

定义

尽管RoundRobinAssignor已经在RangeAssignor上做了⼀些优化来更均衡的分配分区,但是在⼀些情况下依旧会产⽣严重的分配偏差,从字⾯意义上看,Sticky是“粘性的”,可以理解为分配结果是带“粘性的”——每⼀次分配变更相对 上⼀次分配做最少的变动(上⼀次的结果是有粘性的) 其⽬标有两点:

  • 分区的分配尽量的均衡
  • 每⼀次重分配的结果尽量与上⼀次分配结果保持⼀致

场景

到此这篇关于详解kafka中的消息分区分配算法的文章就介绍到这了,更多相关kafka消息分区分配算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

详解kafka中的消息分区分配算法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

kafka中的消息分区分配算法怎么用

本文小编为大家详细介绍“kafka中的消息分区分配算法怎么用”,内容详细,步骤清晰,细节处理妥当,希望这篇“kafka中的消息分区分配算法怎么用”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。背景kafka有分区机
2023-06-30

Kafka消息是如何被分区的

在Kafka中,消息被分区是通过分区器(Partitioner)来实现的。Kafka的分区器会根据消息的键(key)来决定消息应该被发送到哪个分区中。如果消息没有键,分区器会根据默认的分区策略来选择分区。在Kafka中,每个主题(topi
Kafka消息是如何被分区的
2024-03-12

Kafka无法消费?!我的分布式消息服务Kafka却稳如泰山!

在一个月黑风高的夜晚,突然收到现网生产环境Kafka消息积压的告警,梦中惊醒啊,马上起来排查日志。问题现象:消费请求卡死在查找CoordinatorCoordinator为何物?Coordinator用于管理Consumer Group中
2023-06-04

Apache Kafka 分区重分配的实现原理解析

目录一、前言二、工具的使用三、元数据管理及协调器3.1 ZooKeeper3.2 Kafka Controller四、分区重分配流程分析4.1 kafka-reassign-partitions 客户端4.2 controller 维护分区
2022-07-13

kafka分布式消息系统基本架构及功能详解

这篇文章主要为大家介绍了kafka分布式消息系统基本架构及功能详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-03

Android 消息分发使用EventBus的实例详解

Android 消息分发使用EventBus的实例详解1. AndroidStudio使用dependencies { //最新版本 compile 'org.greenrobot:eventbus:3.0.0' //可以翻倍提高E
2023-05-30

python中文分词教程之前向最大正向匹配算法详解

前言 大家都知道,英文的分词由于单词间是以空格进行分隔的,所以分词要相对的容易些,而中文就不同了,中文中一个句子的分隔就是以字为单位的了,而所谓的正向最大匹配和逆向最大匹配便是一种分词匹配的方法,这里以词典匹配说明。 最大匹配算法是自然语言
2022-06-04

java算法之二分查找法的实例详解

java算法之二分查找法的实例详解原理假定查找范围为一个有序数组(如升序排列),要从中查找某一元素,如果该元素在此数组中,则返回其索引,否则返回-1。通过数组长度可取出中间位置元素的索引,将其值与目标值比较,如果中间位置元素值大于目标值,则
2023-05-31

Android中的Dalvik和ART详解及区别分析

要想知道Dalvik和ART区别分析,首先我们要分别知道这两者是什么? 什么是Dalvik? Dalvik是Google公司自己设计用于Android平台的虚拟机。 Dalvik虚拟机是Google等厂商合作开发的Android移动设备平台
2022-06-06

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录