我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python利用PyVista进行mesh的色彩映射的实现

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python利用PyVista进行mesh的色彩映射的实现

最近项目中需要对mesh做一个色彩映射,无意间发现vtk的封装库pyvista相当好用,就试了试,在此做一个总结。

PyVista简介

PyVista是什么

PyVista 是一个:

  • VTK for humans”, 可视化工具包(VTK)的高级API
  • 空间数据的网格数据结构与滤波方法
  • 使3D绘图更加简单,可用于大型/复杂数据的图像化

PyVista(以前的vtki)是可视化工具包(VTK)的一个助手模块,它采用了一种不同的方法,通过NumPy和直接数组访问与VTK进行接口。这个包提供了一个python化的、文档化良好的接口,展示了VTK强大的可视化后端,以方便对空间引用的数据集进行快速原型化、分析和可视化集成。

该模块可用于演示文稿和研究论文的科学绘图,以及其他依赖网格的Python模块的支持模块。

参考:https://docs.pyvista.org/index.html

github

官方教程

pyvista和其他3D可视化工具比较

在这里插入图片描述

参考:https://github.com/pyvista/pyvista/issues/146

pyvista使用

安装


pip install pyvista -i https://pypi.tuna.tsinghua.edu.cn/simple

I/O读取及可视化

mesh类型

pyvista支持读取大多数常见的mesh文件类型,比如PLY,VTK,STL ,OBJ ,BYU 等,一些不常见的mesh文件类型,比如FEniCS/Dolfin_ XML format

(很遗憾,pyvista不支持点云PCD格式,不过可以通过pcdpy、pclpy、python-pcl等库来读取pcd文件)


import pyvista as pv
# 读取
mesh = pv.read('pointCloudData/data.vtk')
# 显示
mesh.plot()
# 其他类似
mesh = pv.read('pointCloudData/data.ply')
……

图片类型

支持读取图片类型数据JPEG, TIFF, PNG等


# 读取
image = pv.read('my_image.jpg')
# 显示
image.plot(rgb=True, cpos="xy")

# 其余图片类型类似
……

mesh彩色映射

项目中需要用到根据高度来对mesh进行彩色映射,在pyvista中大概有四种方法

自定义

代码


import pyvista as pv
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import numpy as np

def mesh_cmp_custom(mesh, name):
 """
 自定义色彩映射
 :param mesh: 输入mesh
 :param name: 比较数据的名字
 :return:
 """
 pts = mesh.points
 mesh[name] = pts[:, 1]
 # Define the colors we want to use
 blue = np.array([12 / 256, 238 / 256, 246 / 256, 1])
 black = np.array([11 / 256, 11 / 256, 11 / 256, 1])
 grey = np.array([189 / 256, 189 / 256, 189 / 256, 1])
 yellow = np.array([255 / 256, 247 / 256, 0 / 256, 1])
 red = np.array([1, 0, 0, 1])

 c_min = mesh[name].min()
 c_max = mesh[name].max()
 c_scale = c_max - c_min

 mapping = np.linspace(c_min, c_max, 256)
 newcolors = np.empty((256, 4))
 newcolors[mapping >= (c_scale * 0.8 + c_min)] = red
 newcolors[mapping < (c_scale * 0.8 + c_min)] = grey
 newcolors[mapping < (c_scale * 0.55 + c_min)] = yellow
 newcolors[mapping < (c_scale * 0.3 + c_min)] = blue
 newcolors[mapping < (c_scale * 0.1 + c_min)] = black

 # Make the colormap from the listed colors
 my_colormap = ListedColormap(newcolors)
 mesh.plot(scalars=name, cmap=my_colormap)

if __name__ == '__main__':
 mesh = pv.read('pointCloudData/1.ply')
 mesh_cmp_custom(mesh, 'y_height')

效果:

在这里插入图片描述

使用pyvista自带的cmp

函数mesh.plot(scalars=name, cmap='viridis_r')

其中cmap支持的样式:

‘Accent', ‘Accent_r', ‘Blues', ‘Blues_r', ‘BrBG', ‘BrBG_r', ‘BuGn', ‘BuGn_r', ‘BuPu', ‘BuPu_r', ‘CMRmap', ‘CMRmap_r', ‘Dark2', ‘Dark2_r', ‘GnBu', ‘GnBu_r', ‘Greens', ‘Greens_r', ‘Greys', ‘Greys_r', ‘OrRd', ‘OrRd_r', ‘Oranges', ‘Oranges_r', ‘PRGn', ‘PRGn_r', ‘Paired', ‘Paired_r', ‘Pastel1', ‘Pastel1_r', ‘Pastel2', ‘Pastel2_r', ‘PiYG', ‘PiYG_r', ‘PuBu', ‘PuBuGn', ‘PuBuGn_r', ‘PuBu_r', ‘PuOr', ‘PuOr_r', ‘PuRd', ‘PuRd_r', ‘Purples', ‘Purples_r', ‘RdBu', ‘RdBu_r', ‘RdGy', ‘RdGy_r', ‘RdPu', ‘RdPu_r', ‘RdYlBu', ‘RdYlBu_r', ‘RdYlGn', ‘RdYlGn_r', ‘Reds', ‘Reds_r', ‘Set1', ‘Set1_r', ‘Set2', ‘Set2_r', ‘Set3', ‘Set3_r', ‘Spectral', ‘Spectral_r', ‘Wistia', ‘Wistia_r', ‘YlGn', ‘YlGnBu', ‘YlGnBu_r', ‘YlGn_r', ‘YlOrBr', ‘YlOrBr_r', ‘YlOrRd', ‘YlOrRd_r', ‘afmhot', ‘afmhot_r', ‘autumn', ‘autumn_r', ‘binary', ‘binary_r', ‘bone', ‘bone_r', ‘brg', ‘brg_r', ‘bwr', ‘bwr_r', ‘cividis', ‘cividis_r', ‘cool', ‘cool_r', ‘coolwarm', ‘coolwarm_r', ‘copper', ‘copper_r', ‘cubehelix', ‘cubehelix_r', ‘flag', ‘flag_r', ‘gist_earth', ‘gist_earth_r', ‘gist_gray', ‘gist_gray_r', ‘gist_heat', ‘gist_heat_r', ‘gist_ncar', ‘gist_ncar_r', ‘gist_rainbow', ‘gist_rainbow_r', ‘gist_stern', ‘gist_stern_r', ‘gist_yarg', ‘gist_yarg_r', ‘gnuplot', ‘gnuplot2', ‘gnuplot2_r', ‘gnuplot_r', ‘gray', ‘gray_r', ‘hot', ‘hot_r', ‘hsv', ‘hsv_r', ‘inferno', ‘inferno_r', ‘jet', ‘jet_r', ‘magma', ‘magma_r', ‘nipy_spectral', ‘nipy_spectral_r', ‘ocean', ‘ocean_r', ‘pink', ‘pink_r', ‘plasma', ‘plasma_r', ‘prism', ‘prism_r', ‘rainbow', ‘rainbow_r', ‘seismic', ‘seismic_r', ‘spring', ‘spring_r', ‘summer', ‘summer_r', ‘tab10', ‘tab10_r', ‘tab20', ‘tab20_r', ‘tab20b', ‘tab20b_r', ‘tab20c', ‘tab20c_r', ‘terrain', ‘terrain_r', ‘turbo', ‘turbo_r', ‘twilight', ‘twilight_r', ‘twilight_shifted', ‘twilight_shifted_r', ‘viridis', ‘viridis_r', ‘winter', ‘winter_r'

代码


import pyvista as pv
def mesh_cmp(mesh, name):
 """
  使用进行plot自带的色彩映射
  :param mesh: 输入mesh
  :param name: 比较数据的名字
  :return:
 """
 pts = mesh.points
 mesh[name] = pts[:, 1]
 mesh.plot(scalars=name, cmap='viridis_r')
 
if __name__ == '__main__':
 mesh = pv.read('vtkData/airplane.ply')
 mesh_cmp(mesh, 'y_height')

效果

在这里插入图片描述

使用Matplotlib的cmp

代码


import pyvista as pv
import matplotlib.pyplot as plt

def mesh_cmp_mpl(mesh, name):
 """
  使用Matplotlib进行色彩映射
  :param mesh: 输入mesh
  :param name: 比较数据的名字
  :return:
  """
 pts = mesh.points
 mesh[name] = pts[:, 1]
 mlp_cmap = plt.cm.get_cmap("viridis", 25)
 mesh.plot(scalars=name, cmap=mlp_cmap)
 
if __name__ == '__main__':
 mesh = pv.read('vtkData/airplane.ply')
 mesh_cmp_mpl(mesh, 'y_height')

效果

在这里插入图片描述

使用colorcet的cmp

需要先安装colorcet:


pip install colorcet

使用方法和上面几种方法类似,若想使用colorcet的colormaps中的hot:

mesh.plot(scalars=name, cmap=“hot”)

代码


def mesh_cmp_colorcet(mesh, name):
 """
  使用进行colorcet进行色彩映射
  :param mesh: 输入mesh
  :param name: 比较数据的名字
  :return:
 """
 pts = mesh.points
 mesh[name] = pts[:, 1]
 mesh.plot(scalars=name, cmap=colorcet.fire)
 
if __name__ == '__main__':
 mesh = pv.read('vtkData/airplane.ply')
 mesh_cmp_colorcet(mesh, 'y_height')

效果:

在这里插入图片描述

总结

pyvista相当强大,而且比直接用vtk更加方便(代码量肉眼可见的降低!)

到此这篇关于Python利用PyVista进行mesh的色彩映射的实现的文章就介绍到这了,更多相关PyVista mesh色彩映射内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python利用PyVista进行mesh的色彩映射的实现

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python中如何利用PyVista进行mesh的色彩映射

这篇文章给大家分享的是有关Python中如何利用PyVista进行mesh的色彩映射的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。PyVista简介PyVista是什么PyVista 是一个:VTK for hu
2023-06-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录