怎么使用Python pandas找出删除重复的数据
这篇文章主要介绍了怎么使用Python pandas找出删除重复的数据的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇怎么使用Python pandas找出删除重复的数据文章都会有所收获,下面我们一起来看看吧。
前言
当我们使用pandas处理数据的时候,经常会遇到数据重复的问题,如何找出重复数据进而分析重复原因,或者如何直接删除重复的数据是一个关键的步骤,pandas提供了很方便的方法:duplicated()和drop_duplicates()。
一、duplicated()
duplicated()可以被用在DataFrame的三种情况下,分别是pandas.DataFrame.duplicated、pandas.Series.duplicated和pandas.Index.duplicated。他们的用法都类似,前两个会返回一个布尔值的Series,最后一个会返回一个布尔值的numpy.ndarray。
DataFrame.duplicated(subset=None, keep=‘first’)
subset:默认为None,需要标记重复的标签或标签序列
keep:默认为‘first’,如何标记重复标签
first:将除第一次出现以外的重复数据标记为True
last:将除最后一次出现以外的重复数据标记为True
False:将所有重复的项都标记为True(不管是不是第一次出现)
Series.duplicated(keep=‘first’)
keep:与DataFrame.duplicated的keep相同
Index.duplicated(keep=‘first’)
keep:与DataFrame.duplicated的keep相同
例子:
import pandas as pddf = pd.DataFrame({ 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], 'rating': [4, 4, 3.5, 15, 5]})df
brand style rating
0 Yum Yum cup 4.0
1 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0
df.duplicated()
0 False
1 True
2 False
3 False
4 False
dtype: bool
df.duplicated(keep='last')
0 True
1 False
2 False
3 False
4 False
dtype: bool
df.duplicated(keep=False)
0 True
1 True
2 False
3 False
4 False
dtype: bool
df.duplicated(subset=['brand'])
0 False
1 True
2 False
3 True
4 True
dtype: bool
关于Index的重复标记:
df = df.set_index('brand')df
style rating
brand
Yum Yum cup 4.0
Yum Yum cup 4.0
Indomie cup 3.5
Indomie pack 15.0
Indomie pack 5.0
df.index.duplicated()
array([False, True, False, True, True])
二、drop_duplicates()
与duplicated()类似,drop_duplicates()是直接把重复值给删掉。下面只会介绍一些含义不同的参数。
DataFrame.drop_duplicates(subset=None, keep=‘first’, inplace=False)
subset:与duplicated()中相同
keep:与duplicated()中相同
inplace:与pandas其他函数的inplace相同,选择是修改现有数据还是返回新的数据
Series.drop_duplicates()相比Series.duplicated()也是多了一个inplace参数,和上诉介绍一样,Index.drop_duplicates()与Index.duplicated()参数相同就不做赘述。下面是例子:
df = pd.DataFrame({ 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], 'rating': [4, 4, 3.5, 15, 5]})df
brand style rating
0 Yum Yum cup 4.0
1 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0
df.drop_duplicates()
brand style rating
0 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0
df.drop_duplicates(inplace = True)df
brand style rating
0 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0
关于“怎么使用Python pandas找出删除重复的数据”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“怎么使用Python pandas找出删除重复的数据”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注编程网行业资讯频道。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341