我的编程空间,编程开发者的网络收藏夹
学习永远不晚

TensorFlow神经网络学习之张量与变量概念

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

TensorFlow神经网络学习之张量与变量概念

一、张量定义

张量:TensorFlow的张量是n维数组,类型为tf.Tensor。

标量:一个数字 (0阶张量)

向量:一维数组 (1阶张量)

矩阵:二维数组 (2阶张量)

二、张量属性

1、张量的类型


#创建常数张量
    a = tf.constant(3.0)    
    print(a)

2、张量的阶

三、张量的指令

1、常数张量(普通)


#创建常数张量
    a = tf.constant(3.0)    
    print(a)

2、张量数组

1、固定张量数组(0)


#创建张量数组
    #0:
    array_0 = tf.zeros(shape=[3,3])    #3*3数组(0)

2、固定张量数组(1)


#1:
    array_1 = tf.ones(shape=[3,3])     #3*3数组(1)

3、随机张量数组


#随机:
    array_random = tf.random_normal(shape=[2,3], mean=1.75, stddev=0.12)
#                                   2*3数组      均值(1.75) 标准差

3、查看张量值

查看张量值:张量.eval()


#会话(查看张量)
    with tf.Session() as sess:
        print(a.eval())
        print(array_0.eval())
        print(array_1.eval())
        print(array_random.eval())

4、张量类型改变


#修改张量类型
    array_0 = tf.cast(array_0, tf.int32)

5、张量形状改变

注:属于动态改变张量,需要张量元素个数固定。


#修改张量形状
    array_random = tf.reshape(array_random, shape=[3,2])

修改前:

修改后:

代码


# 张量(创建与修改)
import tensorflow as tf
# 创建张量
def Create_Tensor():
    # 创建常数张量
    a = tf.constant(3.0)
    print(a)
 
    # 创建张量数组
    # 0:
    array_0 = tf.zeros(shape=[3, 3])  # 3*3数组(0)
 
    # 1:
    array_1 = tf.ones(shape=[3, 3])  # 3*3数组(1)
 
    # 随机:
    array_random = tf.random_normal(shape=[2, 3], mean=1.75, stddev=0.12)
    #                                   2*3数组      均值(1.75) 标准差
 
    # 会话(查看张量)
    with tf.Session() as sess:
        print(a.eval())
        print(array_0.eval())
        print(array_1.eval())
        print(array_random.eval()) 
# 修改张量
def Modify_Tensor():
    global array_0, array_random
    print('修改后的:')
 
    # 修改张量类型
    array_0 = tf.cast(array_0, tf.int32)
 
    # 修改张量形状
    array_random = tf.reshape(array_random, shape=[3, 2])
 
    # 会话(查看张量)
    with tf.Session() as sess:
        print(array_0.eval())
        print(array_random.eval())
 
# 创建张量
Create_Tensor()
# 修改张量
Modify_Tensor()

四、变量

1、定义变量


# 定义变量
a = tf.Variable(initial_value=2)
b = tf.Variable(initial_value=4)
c = tf.add(a,b)

2、初始化变量

TensorFlow的变量必须初始化,否则会报错。


# 初始化变量
init = tf.global_variables_initializer()

3、开启会话(执行)


# 开启会话
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(c))

代码


# 变量
import tensorflow as tf
 
# 定义变量
a = tf.Variable(initial_value=2)
b = tf.Variable(initial_value=4)
c = tf.add(a,b)
 
# 初始化变量
init = tf.global_variables_initializer()
 
# 开启会话
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(c))

以上就是TensorFlow神经网络学习之张量与变量概念的详细内容,更多关于TensorFlow的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

TensorFlow神经网络学习之张量与变量概念

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录