我的编程空间,编程开发者的网络收藏夹
学习永远不晚

全面介绍Apriori算法(Python实现)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

全面介绍Apriori算法(Python实现)

  Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集。而且算法已经被广泛的应用到商业、网络安全等各个领域。今天编程学习网就和大家全面的介绍一下Apriori算法。

 导读:

  随着大数据概念的火热,啤酒与尿布的故事广为人知。我们如何发现买啤酒的人往往也会买尿布这一规律?数据挖掘中的用于挖掘频繁项集和关联规则的Apriori算法可以告诉我们。本文首先对Apriori算法进行简介,而后进一步介绍相关的基本概念,之后详细的介绍Apriori算法的具体策略和步骤,最后给出Python实现代码。

  1.Apriori算法简介

  Apriori算法是经典的挖掘频繁项集和关联规则的数据挖掘算法。A priori在拉丁语中指”来自以前”。当定义问题时,通常会使用先验知识或者假设,这被称作”一个先验”(a priori)。Apriori算法的名字正是基于这样的事实:算法使用频繁项集性质的先验性质,即频繁项集的所有非空子集也一定是频繁的。Apriori算法使用一种称为逐层搜索的迭代方法,其中k项集用于探索(k+1)项集。首先,通过扫描数据库,累计每个项的计数,并收集满足最小支持度的项,找出频繁1项集的集合。该集合记为L1。然后,使用L1找出频繁2项集的集合L2,使用L2找出L3,如此下去,直到不能再找到频繁k项集。每找出一个Lk需要一次数据库的完整扫描。Apriori算法使用频繁项集的先验性质来压缩搜索空间。

  2. 基本概念

  项与项集:设itemset={item1, item_2, …, item_m}是所有项的集合,其中,item_k(k=1,2,…,m)成为项。项的集合称为项集(itemset),包含k个项的项集称为k项集(k-itemset)。

  事务与事务集:一个事务T是一个项集,它是itemset的一个子集,每个事务均与一个唯一标识符Tid相联系。不同的事务一起组成了事务集D,它构成了关联规则发现的事务数据库。

  关联规则:关联规则是形如A=>B的蕴涵式,其中A、B均为itemset的子集且均不为空集,而A交B为空。

  支持度(support):关联规则的支持度定义如下:

全面介绍Apriori算法(Python实现)_大数据_网络安全_Python_编程学习网教育

  其中P(A∪B)表示事务包含集合A和B的并(即包含A和B中的每个项)的概率。注意与P(A or B)区别,后者表示事务包含A或B的概率。

  置信度(confidence):关联规则的置信度定义如下:

其中P(A∪B)表示事务包含集合A和B的并(即包含A和B中的每个项)的概率。注意与P(A or B)区别,后者表示事务包含A或B的概率。    置信度(confidence):关联规则的置信度定义如下

  项集的出现频度(support count):包含项集的事务数,简称为项集的频度、支持度计数或计数。

  频繁项集(frequent itemset):如果项集I的相对支持度满足事先定义好的最小支持度阈值(即I的出现频度大于相应的最小出现频度(支持度计数)阈值),则I是频繁项集。

  强关联规则:满足最小支持度和最小置信度的关联规则,即待挖掘的关联规则。

  3. 实现步骤

  一般而言,关联规则的挖掘是一个两步的过程:

  找出所有的频繁项集

  由频繁项集产生强关联规则

  3.1挖掘频繁项集

  3.1.1 相关定义

  连接步骤:频繁(k-1)项集Lk-1的自身连接产生候选k项集Ck

  Apriori算法假定项集中的项按照字典序排序。如果Lk-1中某两个的元素(项集)itemset1和itemset2的前(k-2)个项是相同的,则称itemset1和itemset2是可连接的。所以itemset1与itemset2连接产生的结果项集是{itemset1[1], itemset1[2], …, itemset1[k-1], itemset2[k-1]}。连接步骤包含在下文代码中的create_Ck函数中。

  剪枝策略

  由于存在先验性质:任何非频繁的(k-1)项集都不是频繁k项集的子集。因此,如果一个候选k项集Ck的(k-1)项子集不在Lk-1中,则该候选也不可能是频繁的,从而可以从Ck中删除,获得压缩后的Ck。下文代码中的is_apriori函数用于判断是否满足先验性质,create_Ck函数中包含剪枝步骤,即若不满足先验性质,剪枝。

  删除策略

  基于压缩后的Ck,扫描所有事务,对Ck中的每个项进行计数,然后删除不满足最小支持度的项,从而获得频繁k项集。删除策略包含在下文代码中的generate_Lk_by_Ck函数中。

  3.1.2 步骤

  每个项都是候选1项集的集合C1的成员。算法扫描所有的事务,获得每个项,生成C1(见下文代码中的create_C1函数)。然后对每个项进行计数。然后根据最小支持度从C1中删除不满足的项,从而获得频繁1项集L1。

  对L1的自身连接生成的集合执行剪枝策略产生候选2项集的集合C2,然后,扫描所有事务,对C2中每个项进行计数。同样的,根据最小支持度从C2中删除不满足的项,从而获得频繁2项集L2。

  对L2的自身连接生成的集合执行剪枝策略产生候选3项集的集合C3,然后,扫描所有事务,对C3每个项进行计数。同样的,根据最小支持度从C3中删除不满足的项,从而获得频繁3项集L3。

  以此类推,对Lk-1的自身连接生成的集合执行剪枝策略产生候选k项集Ck,然后,扫描所有事务,对Ck中的每个项进行计数。然后根据最小支持度从Ck中删除不满足的项,从而获得频繁k项集。

  3.2算法应用

  经典的关联规则数据挖掘算法Apriori算法广泛应用于各种领域,通过对数据的关联性进行了分析和挖掘,挖掘出的这些信息在决策制定过程中具有重要的参考价值。

  Apriori算法广泛应用于商业中,应用于消费市场价格分析中,它能够很快的求出各种产品之间的价格关系和它们之间的影响。通过数据挖掘,市场商人可以瞄准目标客户,采用个人股票行市、最新信息、特殊的市场推广活动或其他一些特殊的信息手段,从而极大地减少广告预算和增加收入。百货商场、超市和一些老字型大小的零售店也在进行数据挖掘,以便猜测这些年来顾客的消费习惯。

  Apriori算法应用于网络安全领域,比如时候入侵检测技术中。早期中大型的电脑系统中都收集审计信息来建立跟踪档,这些审计跟踪的目的多是为了性能测试或计费,因此对攻击检测提供的有用信息比较少。它通过模式的学习和训练可以发现网络用户的异常行为模式。采用作用度的Apriori算法削弱了Apriori算法的挖掘结果规则,是网络入侵检测系统可以快速的发现用户的行为模式,能够快速的锁定攻击者,提高了基于关联规则的入侵检测系统的检测性。

  Apriori算法应用于高校管理中。随着高校贫困生人数的不断增加,学校管理部门资助工作难度也越加增大。针对这一现象,提出一种基于数据挖掘算法的解决方法。将关联规则的Apriori算法应用到贫困助学体系中,并且针对经典Apriori挖掘算法存在的不足进行改进,先将事务数据库映射为一个布尔矩阵,用一种逐层递增的思想来动态的分配内存进行存储,再利用向量求"与"运算,寻找频繁项集。实验结果表明,改进后的Apriori算法在运行效率上有了很大的提升,挖掘出的规则也可以有效地辅助学校管理部门有针对性的开展贫困助学工作。

  Apriori算法被广泛应用于移动通信领域。移动增值业务逐渐成为移动通信市场上最有活力、最具潜力、最受瞩目的业务。随着产业的复苏,越来越多的增值业务表现出强劲的发展势头,呈现出应用多元化、营销品牌化、管理集中化、合作纵深化的特点。针对这种趋势,在关联规则数据挖掘中广泛应用的Apriori算法被很多公司应用。依托某电信运营商正在建设的增值业务web数据仓库平台,对来自移动增值业务方面的调查数据进行了相关的挖掘处理,从而获得了关于用户行为特征和需求的间接反映市场动态的有用信息,这些信息在指导运营商的业务运营和辅助业务提供商的决策制定等方面具有十分重要的参考价值。

  3.3 由频繁项集产生关联规则

  一旦找出了频繁项集,就可以直接由它们产生强关联规则。产生步骤如下:

  对于每个频繁项集itemset,产生itemset的所有非空子集(这些非空子集一定是频繁项集);

  对于itemset的每个非空子集s,如果

对于每个频繁项集itemset,产生itemset的所有非空子集(这些非空子集一定是频繁项集);    对于itemset的每个非空子集s,如果

  则输出s=>(l-s),其中min_conf是最小置信度阈值。

  4. 样例以及Python实现代码

  下图是《数据挖掘:概念与技术》(第三版)中挖掘频繁项集的样例图解。

样例以及Python实现代码 下图是《数据挖掘:概念与技术》(第三版)中挖掘频繁项集的样例图解。

  本文基于该样例的数据编写Python代码实现Apriori算法。

     代码需要注意如下两点:

  由于Apriori算法假定项集中的项是按字典序排序的,而集合本身是无序的,所以我们在必要时需要进行set和list的转换;

  由于要使用字典(support_data)记录项集的支持度,需要用项集作为key,而可变集合无法作为字典的key,因此在合适时机应将项集转为固定集合frozenset。

  """

  # Python 2.7

  # Filename: apriori.py

  # Author: llhthinker

  # Email: hangliu56[AT]gmail[DOT]com

  # Blog: http://www.cnblogs.com/llhthinker/p/6719779.html

  # Date: 2017-04-16

  """

  def load_data_set():

  """

  Load a sample data set (From Data Mining: Concepts and Techniques, 3th Edition)

  Returns:

  A data set: A list of transactions. Each transaction contains several items.

  """

  data_set = [['l1', 'l2', 'l5'], ['l2', 'l4'], ['l2', 'l3'],

  ['l1', 'l2', 'l4'], ['l1', 'l3'], ['l2', 'l3'],

  ['l1', 'l3'], ['l1', 'l2', 'l3', 'l5'], ['l1', 'l2', 'l3']]

  return data_set

  def create_C1(data_set):

  """

  Create frequent candidate 1-itemset C1 by scaning data set.

  Args:

  data_set: A list of transactions. Each transaction contains several items.

  Returns:

  C1: A set which contains all frequent candidate 1-itemsets

  """

  C1 = set()

  for t in data_set:

  for item in t:

  item_set = frozenset([item])

  C1.add(item_set)

  return C1

  def is_apriori(Ck_item, Lksub1):

  """

  Judge whether a frequent candidate k-itemset satisfy Apriori property.

  Args:

  Ck_item: a frequent candidate k-itemset in Ck which contains all frequent

  candidate k-itemsets.

  Lksub1: Lk-1, a set which contains all frequent candidate (k-1)-itemsets.

  Returns:

  True: satisfying Apriori property.

  False: Not satisfying Apriori property.

  """

  for item in Ck_item:

  sub_Ck = Ck_item - frozenset([item])

  if sub_Ck not in Lksub1:

  return False

  return True

  def create_Ck(Lksub1, k):

  """

  Create Ck, a set which contains all all frequent candidate k-itemsets

  by Lk-1's own connection operation.

  Args:

  Lksub1: Lk-1, a set which contains all frequent candidate (k-1)-itemsets.

  k: the item number of a frequent itemset.

  Return:

  Ck: a set which contains all all frequent candidate k-itemsets.

  """

  Ck = set()

  len_Lksub1 = len(Lksub1)

  list_Lksub1 = list(Lksub1)

  for i in range(len_Lksub1):

  for j in range(1, len_Lksub1):

  l1 = list(list_Lksub1[i])

  l2 = list(list_Lksub1[j])

  l1.sort()

  l2.sort()

  if l1[0:k-2] == l2[0:k-2]:

  Ck_item = list_Lksub1[i] | list_Lksub1[j]

  # pruning

  if is_apriori(Ck_item, Lksub1):

  Ck.add(Ck_item)

  return Ck

  def generate_Lk_by_Ck(data_set, Ck, min_support, support_data):

  """

  Generate Lk by executing a delete policy from Ck.

  Args:

  data_set: A list of transactions. Each transaction contains several items.

  Ck: A set which contains all all frequent candidate k-itemsets.

  min_support: The minimum support.

  support_data: A dictionary. The key is frequent itemset and the value is support.

  Returns:

  Lk: A set which contains all all frequent k-itemsets.

  """

  Lk = set()

  item_count = {}

  for t in data_set:

  for item in Ck:

  if item.issubset(t):

  if item not in item_count:

  item_count[item] = 1

  else:

  item_count[item] += 1

  t_num = float(len(data_set))

  for item in item_count:

  if (item_count[item] / t_num) >= min_support:

  Lk.add(item)

  support_data[item] = item_count[item] / t_num

  return Lk

  def generate_L(data_set, k, min_support):

  """

  Generate all frequent itemsets.

  Args:

  data_set: A list of transactions. Each transaction contains several items.

  k: Maximum number of items for all frequent itemsets.

  min_support: The minimum support.

  Returns:

  L: The list of Lk.

  support_data: A dictionary. The key is frequent itemset and the value is support.

  """

  support_data = {}

  C1 = create_C1(data_set)

  L1 = generate_Lk_by_Ck(data_set, C1, min_support, support_data)

  Lksub1 = L1.copy()

  L = []

  L.append(Lksub1)

  for i in range(2, k+1):

  Ci = create_Ck(Lksub1, i)

  Li = generate_Lk_by_Ck(data_set, Ci, min_support, support_data)

  Lksub1 = Li.copy()

  L.append(Lksub1)

  return L, support_data

  def generate_big_rules(L, support_data, min_conf):

  """

  Generate big rules from frequent itemsets.

  Args:

  L: The list of Lk.

  support_data: A dictionary. The key is frequent itemset and the value is support.

  min_conf: Minimal confidence.

  Returns:

  big_rule_list: A list which contains all big rules. Each big rule is represented

  as a 3-tuple.

  """

  big_rule_list = []

  sub_set_list = []

  for i in range(0, len(L)):

  for freq_set in L[i]:

  for sub_set in sub_set_list:

  if sub_set.issubset(freq_set):

  conf = support_data[freq_set] / support_data[freq_set - sub_set]

  big_rule = (freq_set - sub_set, sub_set, conf)

  if conf >= min_conf and big_rule not in big_rule_list:

  # print freq_set-sub_set, " => ", sub_set, "conf: ", conf

  big_rule_list.append(big_rule)

  sub_set_list.append(freq_set)

  return big_rule_list

  if __name__ == "__main__":

  """

  Test

  """

  data_set = load_data_set()

  L, support_data = generate_L(data_set, k=3, min_support=0.2)

  big_rules_list = generate_big_rules(L, support_data, min_conf=0.7)

  for Lk in L:

  print "="*50

  print "frequent " + str(len(list(Lk)[0])) + "-itemsets\\t\\tsupport"

  print "="*50

  for freq_set in Lk:

  print freq_set, support_data[freq_set]

  print

  print "Big Rules"

  for item in big_rules_list:

  print item[0], "=>", item[1], "conf: ", item[2]

  代码运行结果截图如下:

由于要使用字典(support_data)记录项集的支持度,需要用项集作为key,而可变集合无法作为字典的key,因此在合适时机应将项集转为固定集合frozenset。

     结束语:看完文章的小伙伴,都基本上了解Apriori算法了吧!如果各位小伙伴想知道更多关于这方面的内容,随时可以登陆编程学习网,这里面有全面的知识内容还是有视频教学哦~  赶快登陆了解吧!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

全面介绍Apriori算法(Python实现)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

全面介绍Apriori算法(Python实现)

Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集。而且算法已经被广泛的应用到商业、网络安全等各个领域。今天编程学习网就和大家全面的介绍一下Apriori算法。编程学习网教育
全面介绍Apriori算法(Python实现)
2024-04-23

Apriori算法的python实现

原始链接:基于Python的机器学习实战:Apriori原始链接里的代码是在python2下写的,有的地方我看的不是太明白,在这里,我把它修改成能在python3下运行了,还加入了一些方便自己理解的注释。Apriori算法的pyspark实
2023-01-31

怎么用Python代码实现Apriori关联规则算法

这篇文章主要介绍了怎么用Python代码实现Apriori关联规则算法的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇怎么用Python代码实现Apriori关联规则算法文章都会有所收获,下面我们一起来看看吧。一
2023-06-29

简单介绍SORT跟踪算法及其Python实现示例

SORT(Simple Online and Realtime Tracking)是一种基于卡尔曼滤波的目标跟踪算法,它可以在实时场景中对移动目标进行鲁棒跟踪。SORT算法最初是由Alex Bewley等人在2016年提出的,它已被广泛应用
简单介绍SORT跟踪算法及其Python实现示例
2024-01-24

满满的干货!全面的介绍Python的协程是如何实现!看懂算你牛!

解决高并发问题的技术一直在变化,从多进程、多线程,到异步化、协程,面对不同的场景,它们都在用各自不同的方式解决问题。下面我们就来看看,高并发的解决方案是怎么演进的,协程到底解决了什么问题,它又该如何应用。
Python协程2024-12-02

python 点云地面点滤波-progressive TIN densification(PTD)算法介绍

目录1.引言1.1什么是地面点滤波?1.2地面点滤波的相关方法2.PTD具体介绍2.1去除孤立点 2.2参数说明2.3选择种子点并构建TIN模型2.4迭代加密TIN模型本篇博客参考: 1)DEM generation from laser
2022-06-02

python实现H2O中的随机森林算法介绍及其项目实战

随机森林(Random Forest)是一种集成学习方法,通过组合多个决策树来进行分类和回归。它在H2O中也有相应的实现。H2O是一个用于大规模机器学习的开源平台,它提供了分布式的机器学习算法,包括随机森林。H2O的随机森林算法使用了bag
2023-08-15

Java实现的几个常用排序算法介绍

本篇内容主要讲解“Java实现的几个常用排序算法介绍”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Java实现的几个常用排序算法介绍”吧!1. 选择排序选择排序的基本思想是遍历数组的过程中,以
2023-06-17

python点云地面点滤波(Progressive Morphological Filter)算法介绍(PCL库)

目录1. 引言2. Morphological Filters(形态学滤波) 2.1 膨胀/腐蚀2.2 形态学滤波3. Progressive Morphological Filters3.1 参数计算(窗口尺寸/高程差阈值)3.1.1 窗
2022-06-02

shell实现Fisher–Yates shuffle洗牌算法介绍

目录Fisher-Yates shuffle 算法简介shell实现本文介绍使用shell语法实现Fisher–Yates shuffle 洗牌算法。 Fisher-Yates shuffle 算法简介 Fisher–Yates s
2022-06-04

K-means聚类算法介绍与利用python实现的代码示例

聚类 今天说K-means聚类算法,但是必须要先理解聚类和分类的区别,很多业务人员在日常分析时候不是很严谨,混为一谈,其实二者有本质的区别。 分类其实是从特定的数据中挖掘模式,作出判断的过程。比如Gmail邮箱里有垃圾邮件分类器,一开始的时
2022-06-04

线路规划,寻路算法介绍及代码实现

下面是对Dijkstra算法和A*算法的详细介绍,包括算法思路、过程和使用C#或Java实现的源代码。这两种算法都是常用的寻路算法,可以根据具体需求选择使用。

Java算法中的选择排序的介绍及实现

本篇内容主要讲解“Java算法中的选择排序的介绍及实现”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Java算法中的选择排序的介绍及实现”吧!选择排序(Selection Sort)简介:选择排
2023-06-02

编程热搜

  • Mysql分表查询海量数据和解决方案
    众所周知数据库的管理往往离不开各种的数据优化,而要想进行优化通常我们都是通过参数来完成优化的。那么到底这些参数有哪些呢?为此在本篇文章中编程学习网笔者就为大家简单介绍MySQL,以供大家参考参考,希望能帮助到大家。以上就是关于大数据的知识点了。喜欢的可以分享给你的朋友,也可以点赞噢~更多内容,就在编程学习网!
    Mysql分表查询海量数据和解决方案
  • 大数据的妙用及17年趋势
    2017年,支持大量结构化和非结构化数据的系统将继续增长。市场需要数据平台来帮助数据管理人员管理和保护大数据,同时允许最终用户进行数据分析。这些系统将逐步成熟,在企业内部的IT系统中更好地运行。所以,我们更要了解大数据!互联网普及使得网民的行为更加多元化,通过互联网产生的数据发展更加迅猛,更具代表性。互联网世界中的商品信息、社交媒体中的图片、文本信息以及视频网站的视频信息,互联网世界中的人与人交互信息、位置信息等,都已经成为大数据的最重要也是增长最快的来源。大家都了解到了吗!更多内容就在编程学习网哟
    大数据的妙用及17年趋势
  • 5G大数据时代空降来袭
    欢迎各位阅读本篇文章,本文主要讲了5G大数据时代。如今 5G 概念已不再陌生,按照行业认同的说法:2017年至2018年 5G 将在国内开始有序测试,2019年进行预商用。工信部之前已表示,中国将在2020年启动 5G 商用。编程学习网教育平台提醒各位:本篇文章纯干货~因此大家一定要认真阅读本篇文章哦!
    5G大数据时代空降来袭
  • es详解-原理-从图解构筑对es原理的初步认知
    在学习ElasticSearch原理时,我推荐你先通过官方博客中的一篇图解文章(虽然是基于2.x版本)来构筑对ES的初步认知(这种认识是体系上的快速认知)。ES详解 - 原理:从图解构筑对ES原理的初步认知前言图解ElasticSearch图解LuceneSegmentInverted IndexStored Fiel
    es详解-原理-从图解构筑对es原理的初步认知
  • elasticsearch-wrapperquery
    在工作中遇到ElasticSearch版本升级时出现Java High Level接口变更导致的兼容性问题: 之前使用的是2.4.x,考虑性能和功能的增强,需要更换为6.4.x; 2.4.x中我们使用DSL语句直接查询(数据的不确定性和方便动态建立查询规则等因素),而新的ES Java 高阶API中去掉了相关接口的支持
    elasticsearch-wrapperquery
  • 学习大数据营销思维(下)
    编程学习网: 其实,通过上面的介绍,我们知道苹果通过各类产品与服务销售相互促进以理及薄利多销的方式来盈利第二种战略联盟类型是合作方的共同赢利。苹果公司打造了一个参与方共同受益的业务系统。
    学习大数据营销思维(下)
  • 纯干货:HLS 协议详解及优化技术全面解析
    编程学习网:HLS (HTTP Live Streaming), 是由 Apple 公司实现的基于 HTTP 的媒体流传输协议。他跟 DASH 协议的原理非常类似,通过将整条流切割成一个小的可以通过 HTTP 下载的媒体文件,然后提供一个配套的媒体列表文件给客户端,让客户端顺序地拉取这些媒体文件播放, 来实现看上去是在播放一条流的效果。HLS 目前广泛地应用于点播和直播领域。
    纯干货:HLS 协议详解及优化技术全面解析
  • 关于Python 代码全面分析
    欢迎各位阅读本篇,Python(KK 英语发音:/ˈpaɪθən/)是一种面向对象、直译式计算机程序设计语言。本篇文章讲述了关于Python 代码全面分析。
    关于Python 代码全面分析
  • es详解-原理-es原理之索引文档流程详解
    ElasticSearch中最重要原理是文档的索引和文档的读取,本文带你理解ES文档的索引过程。ES详解 - 原理:ES原理之索引文档流程详解文档索引步骤顺序单个文档多个文档文档索引过程详解整体的索引流程分步骤看数据持久化过程深入ElasticSearch索引文档的实现机制写操作的关键点Lucene的写Elastics
    es详解-原理-es原理之索引文档流程详解
  • 五大“网管”必备的网络数据分析工具
    是不是在为如何分析统计网络数据和流量烦恼呢?想不想监控、运维、排障轻松一些?下面给大家提供一些免费网络分析工具,以帮助大家更好的掌控自己的网络!编程学习网教育
    五大“网管”必备的网络数据分析工具

目录