Android okhttp的启动流程及源码解析
前言
这篇文章主要讲解了okhttp的主要工作流程以及源码的解析。
什么是OKhttp
简单来说 OkHttp 就是一个客户端用来发送 HTTP 消息并对服务器的响应做出处理的应用层框架。 那么它有什么优点呢?
- 易使用、易扩展。
- 支持 HTTP/2 协议,允许对同一主机的所有请求共用同一个 socket 连接。
- 如果 HTTP/2 不可用, 使用连接池复用减少请求延迟。
- 支持 GZIP,减小了下载大小。
- 支持缓存处理,可以避免重复请求。
- 如果你的服务有多个 IP 地址,当第一次连接失败,OkHttp 会尝试备用地址。
- OkHttp 还处理了代理服务器问题和SSL握手失败问题。
OkHttp是如何做网络请求的
1.它是如何使用的?
1.1 通过构造者模式添加 url,method,header,body 等完成一个请求的信息 Request 对象
val request = Request.Builder()
.url("")
.addHeader("","")
.get()
.build()
1.2 同样通过构造者模式创建一个 OkHttpClicent 实例,可以按需配置
val okHttpClient = OkHttpClient.Builder()
.connectTimeout(15, TimeUnit.SECONDS)
.readTimeout(15, TimeUnit.SECONDS)
.addInterceptor()
.build()
1.3 创建 Call 并且发起网络请求
val newCall = okHttpClient.newCall(request)
//异步请求数据
newCall.enqueue(object :Callback{
override fun onFailure(call: Call, e: IOException) {}
override fun onResponse(call: Call, response: Response) {}
})
//同步请求数据
val response = newCall.execute()
整个使用流程很简单,主要的地方在于如何通过 Call 对象发起同/异步请求,后续的源码追踪以方法开始。
2.如何通过 Call 发起请求?
2.1 Call 是什么
override fun newCall(request: Request): Call = RealCall(this, request, forWebSocket = false)
2.2 发起请求-异步请求
//RealCall#enqueue(responseCallback: Callback)
override fun enqueue(responseCallback: Callback) {
synchronized(this) {
//检查这个call是否执行过,每个 call 只能被执行一次
check(!executed) { "Already Executed" }
executed = true
}
//此方法调用了EventListener#callStart(call: Call),
主要是用来监视应用程序的HTTP调用的数量,大小和各个阶段的耗时
callStart()
//创建AsyncCall,实际是个Runnable
client.dispatcher.enqueue(AsyncCall(responseCallback))
}
enqueue 最后一个方法分为两步
- 第一步将响应的回调放入 AsyncCall 对象中 ,AsyncCall 对象是 RealCall 的一个内部类实现了 Runnable 接口。
- 第二步通过 Dispatcher 类的 enqueue() 将 AsyncCall 对象传入
//Dispatcher#enqueue(call: AsyncCall)
private val readyAsyncCalls = ArrayDeque<AsyncCall>()
internal fun enqueue(call: AsyncCall) {
synchronized(this) {
//将call添加到即将运行的异步队列
readyAsyncCalls.add(call)
...
promoteAndExecute()
}
//Dispatcher#promoteAndExecute()
//将[readyAsyncCalls]过渡到[runningAsyncCalls]
private fun promoteAndExecute(): Boolean {
...
for (i in 0 until executableCalls.size) {
val asyncCall = executableCalls[i]
//这里就是通过 ExecutorService 执行 run()
asyncCall.executeOn(executorService)
}
return isRunning
}
//RealCall.kt中的内部类
internal inner class AsyncCall(
private val responseCallback: Callback
) : Runnable {
fun executeOn(executorService: ExecutorService) {
...
//执行Runnable
executorService.execute(this)
...
}
override fun run() {
threadName("OkHttp ${redactedUrl()}") {
...
try {
//兜兜转转 终于调用这个关键方法了
val response = getResponseWithInterceptorChain()
signalledCallback = true
//通过之前传入的接口回调数据
responseCallback.onResponse(this@RealCall, response)
} catch (e: IOException) {
if (signalledCallback) {
Platform.get().log("Callback failure for ${toLoggableString()}", Platform.INFO, e)
} else {
responseCallback.onFailure(this@RealCall, e)
}
} catch (t: Throwable) {
cancel()
if (!signalledCallback) {
val canceledException = IOException("canceled due to $t")
canceledException.addSuppressed(t)
responseCallback.onFailure(this@RealCall, canceledException)
}
throw t
} finally {
//移除队列
client.dispatcher.finished(this)
}
}
}
}
2.3 同步请求 RealCall#execute()
override fun execute(): Response {
//同样判断是否执行过
synchronized(this) {
check(!executed) { "Already Executed" }
executed = true
}
timeout.enter()
//同样监听
callStart()
try {
//同样执行
client.dispatcher.executed(this)
return getResponseWithInterceptorChain()
} finally {
//同样移除
client.dispatcher.finished(this)
}
}
3.如何通过拦截器处理请求和响应?
无论同异步请求都会调用到 getResponseWithInterceptorChain() ,这个方法主要使用责任链模式将整个请求分为几个拦截器调用 ,简化了各自的责任和逻辑,可以扩展其它拦截器,看懂了拦截器 OkHttp 就了解的差不多了。
@Throws(IOException::class)
internal fun getResponseWithInterceptorChain(): Response {
// 构建完整的拦截器
val interceptors = mutableListOf<Interceptor>()
interceptors += client.interceptors //用户自己拦截器,数据最开始和最后
interceptors += RetryAndFollowUpInterceptor(client) //失败后的重试和重定向
interceptors += BridgeInterceptor(client.cookieJar) //桥接用户的信息和服务器的信息
interceptors += CacheInterceptor(client.cache) //处理缓存相关
interceptors += ConnectInterceptor //负责与服务器连接
if (!forWebSocket) {
interceptors += client.networkInterceptors //配置 OkHttpClient 时设置,数据未经处理
}
interceptors += CallServerInterceptor(forWebSocket) //负责向服务器发送请求数据、从服务器读取响应数据
//创建拦截链
val chain = RealInterceptorChain(
call = this,
interceptors = interceptors,
index = 0,
exchange = null,
request = originalRequest,
connectTimeoutMillis = client.connectTimeoutMillis,
readTimeoutMillis = client.readTimeoutMillis,
writeTimeoutMillis = client.writeTimeoutMillis
)
var calledNoMoreExchanges = false
try {
//拦截链的执行
val response = chain.proceed(originalRequest)
...
} catch (e: IOException) {
...
} finally {
...
}
}
//1.RealInterceptorChain#proceed(request: Request)
@Throws(IOException::class)
override fun proceed(request: Request): Response {
...
// copy出新的拦截链,链中的拦截器集合index+1
val next = copy(index = index + 1, request = request)
val interceptor = interceptors[index]
//调用拦截器的intercept(chain: Chain): Response 返回处理后的数据 交由下一个拦截器处理
@Suppress("USELESS_ELVIS")
val response = interceptor.intercept(next) ?: throw NullPointerException(
"interceptor $interceptor returned null")
...
//返回最终的响应体
return response
}
拦截器开始操作 Request。
3.1 拦截器是怎么拦截的?
拦截器都继承自 Interceptor 类并实现了 fun intercept(chain: Chain): Response 方法。
在 intercept 方法里传入 chain 对象 调用它的 proceed() 然后 proceed() 方法里又 copy 下一个拦截器,然后双调用了 intercept(chain: Chain) 接着叒 chain.proceed(request) 直到最后一个拦截器 return response 然后一层一层向上反馈数据。
3.2 RetryAndFollowUpInterceptor
这个拦截器是用来处理重定向的后续请求和失败重试,也就是说一般第一次发起请求不需要重定向会调用下一个拦截器。
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val realChain = chain as RealInterceptorChain
var request = chain.request
val call = realChain.call
var followUpCount = 0
var priorResponse: Response? = null
var newExchangeFinder = true
var recoveredFailures = listOf<IOException>()
while (true) {
...//在调用下一个拦截器前的操作
var response: Response
try {
...
try {
//调用下一个拦截器
response = realChain.proceed(request)
newExchangeFinder = true
} catch (e: RouteException) {
...
continue
} catch (e: IOException) {
...
continue
}
...
//处理上一个拦截器返回的 response
val followUp = followUpRequest(response, exchange)
...
//中间有一些判断是否需要重新请求 不需要则返回 response
//处理之后重新请求 Request
request = followUp
priorResponse = response
} finally {
call.exitNetworkInterceptorExchange(closeActiveExchange)
}
}
}
@Throws(IOException::class)
private fun followUpRequest(userResponse: Response, exchange: Exchange?): Request? {
val route = exchange?.connection?.route()
val responseCode = userResponse.code
val method = userResponse.request.method
when (responseCode) {
//3xx 重定向
HTTP_PERM_REDIRECT, HTTP_TEMP_REDIRECT, HTTP_MULT_CHOICE, HTTP_MOVED_PERM, HTTP_MOVED_TEMP, HTTP_SEE_OTHER -> {
//这个方法重新 构建了 Request 用于重新请求
return buildRedirectRequest(userResponse, method)
}
... 省略一部分code
else -> return null
}
}
在 followUpRequest(userResponse: Response, exchange: Exchange?): Request? 方法中判断了 response 中的服务器响应码做出了不同的操作。
3.3 BridgeInterceptor
它负责对于 Http 的额外预处理,比如 Content-Length 的计算和添加、 gzip 的⽀持(Accept-Encoding: gzip)、 gzip 压缩数据的解包等,这个类比较简单就不贴代码了,想了解的话可以自行查看。
3.4 CacheInterceptor
这个类负责 Cache 的处理,如果本地有了可⽤的 Cache,⼀个请求可以在没有发⽣实质⽹络交互的情况下就返回缓存结果,实现如下。
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
//在Cache(DiskLruCache)类中 通过request.url匹配response
val cacheCandidate = cache?.get(chain.request())
//记录当前时间点
val now = System.currentTimeMillis()
//缓存策略 有两种类型
//networkRequest 网络请求
//cacheResponse 缓存的响应
val strategy = CacheStrategy.Factory(now, chain.request(), cacheCandidate).compute()
val networkRequest = strategy.networkRequest
val cacheResponse = strategy.cacheResponse
//计算请求次数和缓存次数
cache?.trackResponse(strategy)
...
// 如果 禁止使用网络 并且 缓存不足,返回504和空body的Response
if (networkRequest == null && cacheResponse == null) {
return Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(HTTP_GATEWAY_TIMEOUT)
.message("Unsatisfiable Request (only-if-cached)")
.body(EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build()
}
// 如果策略中不能使用网络,就把缓存中的response封装返回
if (networkRequest == null) {
return cacheResponse!!.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build()
}
//调用拦截器process从网络获取数据
var networkResponse: Response? = null
try {
networkResponse = chain.proceed(networkRequest)
} finally {
// If we're crashing on I/O or otherwise, don't leak the cache body.
if (networkResponse == null && cacheCandidate != null) {
cacheCandidate.body?.closeQuietly()
}
}
//如果有缓存的Response
if (cacheResponse != null) {
//如果网络请求返回code为304 即说明资源未修改
if (networkResponse?.code == HTTP_NOT_MODIFIED) {
//直接封装封装缓存的Response返回即可
val response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers, networkResponse.headers))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis)
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis)
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build()
networkResponse.body!!.close()
// Update the cache after combining headers but before stripping the
// Content-Encoding header (as performed by initContentStream()).
cache!!.trackConditionalCacheHit()
cache.update(cacheResponse, response)
return response
} else {
cacheResponse.body?.closeQuietly()
}
}
val response = networkResponse!!.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build()
if (cache != null) {
//判断是否具有主体 并且 是否可以缓存供后续使用
if (response.promisesBody() && CacheStrategy.isCacheable(response, networkRequest)) {
// 加入缓存中
val cacheRequest = cache.put(response)
return cacheWritingResponse(cacheRequest, response)
}
//如果请求方法无效 就从缓存中remove掉
if (HttpMethod.invalidatesCache(networkRequest.method)) {
try {
cache.remove(networkRequest)
} catch (_: IOException) {
// The cache cannot be written.
}
}
}
return response
}
3.5 ConnectInterceptor
此类负责建⽴连接。 包含了⽹络请求所需要的 TCP 连接(HTTP),或者 TCP 之前的 TLS 连接(HTTPS),并且会创建出对应的 HttpCodec 对象(⽤于编码解码 HTTP 请求)。
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val realChain = chain as RealInterceptorChain
val exchange = realChain.call.initExchange(chain)
val connectedChain = realChain.copy(exchange = exchange)
return connectedChain.proceed(realChain.request)
}
看似短短四行实际工作还是比较多的。
internal fun initExchange(chain: RealInterceptorChain): Exchange {
...
//codec是对 HTTP 协议操作的抽象,有两个实现:Http1Codec和Http2Codec,对应 HTTP/1.1 和 HTTP/2。
val codec = exchangeFinder.find(client, chain)
val result = Exchange(this, eventListener, exchangeFinder, codec)
...
return result
}
#ExchangeFinder.find
fun find(client: OkHttpClient,chain: RealInterceptorChain):ExchangeCodec {
try {
//寻找一个可用的连接
val resultConnection = findHealthyConnection(
connectTimeout = chain.connectTimeoutMillis,
readTimeout = chain.readTimeoutMillis,
writeTimeout = chain.writeTimeoutMillis,
pingIntervalMillis = client.pingIntervalMillis,
connectionRetryEnabled = client.retryOnConnectionFailure,
doExtensiveHealthChecks = chain.request.method != "GET"
)
return resultConnection.newCodec(client, chain)
} catch (e: RouteException) {
trackFailure(e.lastConnectException)
throw e
} catch (e: IOException) {
trackFailure(e)
throw RouteException(e)
}
}
@Throws(IOException::class)
private fun findHealthyConnection(
connectTimeout: Int,
readTimeout: Int,
writeTimeout: Int,
pingIntervalMillis: Int,
connectionRetryEnabled: Boolean,
doExtensiveHealthChecks: Boolean
): RealConnection {
while (true) {
//寻找连接
val candidate = findConnection(
connectTimeout = connectTimeout,
readTimeout = readTimeout,
writeTimeout = writeTimeout,
pingIntervalMillis = pingIntervalMillis,
connectionRetryEnabled = connectionRetryEnabled
)
//确认找到的连接可用并返回
if (candidate.isHealthy(doExtensiveHealthChecks)) {
return candidate
}
...
throw IOException("exhausted all routes")
}
}
@Throws(IOException::class)
private fun findConnection(
connectTimeout: Int,
readTimeout: Int,
writeTimeout: Int,
pingIntervalMillis: Int,
connectionRetryEnabled: Boolean
): RealConnection {
if (call.isCanceled()) throw IOException("Canceled")
// 1. 尝试重用这个call的连接 比如重定向需要再次请求 那么这里就会重用之前的连接
val callConnection = call.connection
if (callConnection != null) {
var toClose: Socket? = null
synchronized(callConnection) {
if (callConnection.noNewExchanges || !sameHostAndPort(callConnection.route().address.url)) {
toClose = call.releaseConnectionNoEvents()
}
}
//返回这个连接
if (call.connection != null) {
check(toClose == null)
return callConnection
}
// The call's connection was released.
toClose?.closeQuietly()
eventListener.connectionReleased(call, callConnection)
}
...
// 2. 尝试从连接池中找一个连接 找到就返回连接
if (connectionPool.callAcquirePooledConnection(address, call, null, false)) {
val result = call.connection!!
eventListener.connectionAcquired(call, result)
return result
}
// 3. 如果连接池中没有 计算出下一次要尝试的路由
val routes: List<Route>?
val route: Route
if (nextRouteToTry != null) {
// Use a route from a preceding coalesced connection.
routes = null
route = nextRouteToTry!!
nextRouteToTry = null
} else if (routeSelection != null && routeSelection!!.hasNext()) {
// Use a route from an existing route selection.
routes = null
route = routeSelection!!.next()
} else {
// Compute a new route selection. This is a blocking operation!
var localRouteSelector = routeSelector
if (localRouteSelector == null) {
localRouteSelector = RouteSelector(address, call.client.routeDatabase, call, eventListener)
this.routeSelector = localRouteSelector
}
val localRouteSelection = localRouteSelector.next()
routeSelection = localRouteSelection
routes = localRouteSelection.routes
if (call.isCanceled()) throw IOException("Canceled")
// Now that we have a set of IP addresses, make another attempt at getting a connection from
// the pool. We have a better chance of matching thanks to connection coalescing.
if (connectionPool.callAcquirePooledConnection(address, call, routes, false)) {
val result = call.connection!!
eventListener.connectionAcquired(call, result)
return result
}
route = localRouteSelection.next()
}
// Connect. Tell the call about the connecting call so async cancels work.
// 4.到这里还没有找到可用的连接 但是找到了 route 即路由 进行socket/tls连接
val newConnection = RealConnection(connectionPool, route)
call.connectionToCancel = newConnection
try {
newConnection.connect(
connectTimeout,
readTimeout,
writeTimeout,
pingIntervalMillis,
connectionRetryEnabled,
call,
eventListener
)
} finally {
call.connectionToCancel = null
}
call.client.routeDatabase.connected(newConnection.route())
// If we raced another call connecting to this host, coalesce the connections. This makes for 3
// different lookups in the connection pool!
// 4.查找是否有多路复用(http2)的连接,有就返回
if (connectionPool.callAcquirePooledConnection(address, call, routes, true)) {
val result = call.connection!!
nextRouteToTry = route
newConnection.socket().closeQuietly()
eventListener.connectionAcquired(call, result)
return result
}
synchronized(newConnection) {
//放入连接池中
connectionPool.put(newConnection)
call.acquireConnectionNoEvents(newConnection)
}
eventListener.connectionAcquired(call, newConnection)
return newConnection
}
接下来看看是如何建立连接的
fun connect(
connectTimeout: Int,
readTimeout: Int,
writeTimeout: Int,
pingIntervalMillis: Int,
connectionRetryEnabled: Boolean,
call: Call,
eventListener: EventListener
) {
...
while (true) {
try {
if (route.requiresTunnel()) {
//创建tunnel,用于通过http代理访问https
//其中包含connectSocket、createTunnel
connectTunnel(connectTimeout, readTimeout, writeTimeout, call, eventListener)
if (rawSocket == null) {
// We were unable to connect the tunnel but properly closed down our resources.
break
}
} else {
//不创建tunnel就创建socket连接 获取到数据流
connectSocket(connectTimeout, readTimeout, call, eventListener)
}
//建立协议连接tsl
establishProtocol(connectionSpecSelector, pingIntervalMillis, call, eventListener)
eventListener.connectEnd(call, route.socketAddress, route.proxy, protocol)
break
} catch (e: IOException) {
...
}
}
...
}
建立tsl连接
@Throws(IOException::class)
private fun establishProtocol(
connectionSpecSelector: ConnectionSpecSelector,
pingIntervalMillis: Int,
call: Call,
eventListener: EventListener
) {
//ssl为空 即http请求 明文请求
if (route.address.sslSocketFactory == null) {
if (Protocol.H2_PRIOR_KNOWLEDGE in route.address.protocols) {
socket = rawSocket
protocol = Protocol.H2_PRIOR_KNOWLEDGE
startHttp2(pingIntervalMillis)
return
}
socket = rawSocket
protocol = Protocol.HTTP_1_1
return
}
//否则为https请求 需要连接sslSocket 验证证书是否可被服务器接受 保存tsl返回的信息
eventListener.secureConnectStart(call)
connectTls(connectionSpecSelector)
eventListener.secureConnectEnd(call, handshake)
if (protocol === Protocol.HTTP_2) {
startHttp2(pingIntervalMillis)
}
}
至此,创建好了连接,返回到最开始的 find() 方法返回 ExchangeCodec 对象,再包装为 Exchange 对象用来下一个拦截器操作。
3.6 CallServerInterceptor
这个类负责实质的请求与响应的 I/O 操作,即往 Socket ⾥写⼊请求数据,和从 Socket ⾥读取响应数据。
总结
用一张 @piasy 的图来做总结,图很干练结构也很清晰。
以上就是Android okhttp的启动流程及源码解析的详细内容,更多关于Android okhttp的启动流程的资料请关注编程网其它相关文章!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341