我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python深度学习pyTorch权重衰减与L2范数正则化解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python深度学习pyTorch权重衰减与L2范数正则化解析

在这里插入图片描述

下面进行一个高维线性实验

假设我们的真实方程是:

在这里插入图片描述

假设feature数200,训练样本和测试样本各20个

模拟数据集


num_train,num_test = 10,10
num_features = 200
true_w = torch.ones((num_features,1),dtype=torch.float32) * 0.01
true_b = torch.tensor(0.5)
samples = torch.normal(0,1,(num_train+num_test,num_features))
noise = torch.normal(0,0.01,(num_train+num_test,1))
labels = samples.matmul(true_w) + true_b + noise
train_samples, train_labels= samples[:num_train],labels[:num_train]
test_samples, test_labels = samples[num_train:],labels[num_train:]

定义带正则项的loss function


def loss_function(predict,label,w,lambd):
    loss = (predict - label) ** 2
    loss = loss.mean() + lambd * (w**2).mean()
    return loss

画图的方法


def semilogy(x_val,y_val,x_label,y_label,x2_val,y2_val,legend):
    plt.figure(figsize=(3,3))
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.semilogy(x_val,y_val)
    if x2_val and y2_val:
        plt.semilogy(x2_val,y2_val)
        plt.legend(legend)
    plt.show()

拟合和画图


def fit_and_plot(train_samples,train_labels,test_samples,test_labels,num_epoch,lambd):
    w = torch.normal(0,1,(train_samples.shape[-1],1),requires_grad=True)
    b = torch.tensor(0.,requires_grad=True)
    optimizer = torch.optim.Adam([w,b],lr=0.05)
    train_loss = []
    test_loss = []
    for epoch in range(num_epoch):
        predict = train_samples.matmul(w) + b
        epoch_train_loss = loss_function(predict,train_labels,w,lambd)
        optimizer.zero_grad()
        epoch_train_loss.backward()
        optimizer.step()
        test_predict = test_sapmles.matmul(w) + b
        epoch_test_loss = loss_function(test_predict,test_labels,w,lambd)
        train_loss.append(epoch_train_loss.item())
        test_loss.append(epoch_test_loss.item())
    semilogy(range(1,num_epoch+1),train_loss,'epoch','loss',range(1,num_epoch+1),test_loss,['train','test'])

在这里插入图片描述
可以发现加了正则项的模型,在测试集上的loss确实下降了

以上就是Python深度学习pyTorch权重衰减与L2范数正则化解析的详细内容,更多关于Python pyTorch权重与L2范数正则化的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python深度学习pyTorch权重衰减与L2范数正则化解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录