如何在python中计算矩阵特征向量
短信预约 -IT技能 免费直播动态提醒
本篇文章给大家分享的是有关如何在python中计算矩阵特征向量,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
python可以做什么
Python是一种编程语言,内置了许多有效的工具,Python几乎无所不能,该语言通俗易懂、容易入门、功能强大,在许多领域中都有广泛的应用,例如最热门的大数据分析,人工智能,Web开发等。
一、使用numpy.linalg.eig(a)函数
参数:
a:想要计算奇异值和右奇异值的方阵。
返回值:
w:特征值。每个特征值根据它的多重性重复。这个数组将是复杂类型,除非虚数部分为0。当传进的参数a是实数时,得到的特征值是实数。
v:特征向量。
使用实例
>>> from numpy import linalg as LA>>> a = np.array([[1, 1j], [-1j, 1]])>>> w, v = LA.eig(a)>>> w; varray([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0}array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]])>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])>>> # Theor. e-values are 1 +/- 1e-9>>> w, v = LA.eig(a)>>> w; varray([ 1., 1.])array([[ 1., 0.], [ 0., 1.]])
二、使用scipy.linalg.eig()计算方阵的特征向量(numpy方法的拓展)
1、语法格式
print('Eig:',lg.eig(arr)) #求矩阵arr的特征向量
2、使用实例
#coding:utf-8 from __future__ import divisionfrom scipy import linalg as lafrom scipy import optimizeimport sympyimport numpy as npsympy.init_printing()import matplotlib.pyplot as plt# 使用scipy求解矩阵特征值A = np.array([[1, 3, 5], [3, 5, 3], [5, 3, 9]])evals, evecs = la.eig(A)eigvalues = la.eigvalsh(A)
以上就是如何在python中计算矩阵特征向量,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注编程网行业资讯频道。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341