介绍一下TensorFlow的变量和占位符的区别和用途
短信预约 -IT技能 免费直播动态提醒
TensorFlow中的变量和占位符都是用来存储数据的,但它们有不同的特点和用途。
-
变量(Variable): 变量是在模型训练过程中可被训练(优化)的参数,它们包含了模型的权重和偏置等可学习的参数。变量会在每次训练迭代中更新其数值,从而使模型逐渐收敛到最优解。在TensorFlow中,通过tf.Variable()函数来创建变量并初始化其数值。
-
占位符(Placeholder): 占位符是用来传入外部数据的参数,它在模型训练前需要被赋值,然后在模型训练过程中不会再改变。占位符通常用来表示输入数据和标签,可以在模型训练过程中动态地传入不同的数据。在TensorFlow中,通过tf.placeholder()函数来创建占位符。
总结:
- 变量用于存储模型参数,会在训练过程中不断更新;
- 占位符用于传入外部数据,不会在训练过程中更新。
在模型训练中,变量和占位符通常是一起使用的,用于构建模型的输入数据和参数,以及进行训练。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341