我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++并查集算法简单详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++并查集算法简单详解

1、并查集的初始化

并查集是用一个数组实现的。首先先定义一个数组:

int father[N];

father[i]表示元素i的父亲结点。

接下来进行初始化。一开始,每个元素都分别是独立的一个集合,父亲结点就是它自己,所以初始化时将所有father[i]等于i:

for(int i = 1; i <= N; i++){
    father[i] = i;
}

 这样,就将father数组初始化完毕。

2、并查集的查找操作

由于规定同一个集合中只存在一个根结点,因此查找操作,就是查找给定结点的根结点的过程。可以通过递推或递归来实现,思路都是一样的,都是反复寻找父亲结点,直到找到根结点为止。

递推代码:

//findFather函数返回元素x所在集合的根结点
int findFather(int x){
    while(x != father[x]){    //如果不是根结点,继续循环
        x = father[x];    //获得自己的父亲结点
    }
    return x;
}

上述代码中, while(x != father[x]),说明当x的父亲结点不等于本身时,也就是x不是根结点时就继续循环,因为父亲结点等于本身这个情况,只有在根结点才会出现。

递归代码:

int findFather(int x){
    if(x == father[x]) return x;    //如找到根结点,就返回根结点编号x
    else return findFather(father[x]); //否则,递归判断x的父亲结点是否是根结点
}

3、并查集的合并操作

合并,就是把两个集合合并成一个集合。实现过程是:先判断两个元素是否属于同一个集合,不属于同一个集合,就开始进行合并操作。判断两个元素是否属于同一个集合的具体思路,就是调用上面的findFather函数,分别查找两个元素所属集合的根结点,根结点不同,则两个元素不属于同一个集合。合并两个集合的具体思路,就是将其中一个集合的根结点的父亲指向另外一个集合的根结点即可。

合并操作的代码实现:(假设有两个集合,一个集合里有元素a,一个集合有元素b)

void Union(int a, int b){
    //让一个集合的根结点的父亲指向另一个集合的根结点
    father(findFather(a)) = findFather(b); 
}

注意,合并操作之前,最好先判断下待合并的两个元素是否位于同一个集合。

4、为什么要路径压缩?

5、实现路径压缩

由于findFather函数目的就是查找根结点,所以,我们在查找结点的路径上直接将所有结点的父亲都指向根结点,查找的时候就不必一直回溯去寻找父亲了,查询的复杂度可以降为O(1)。

比如下面这张图:

观察图不难发现,上图中father[1] = 1,father[2] = 1,father[3] = 2,father[4] = 3。经过路径压缩,就变成下面这幅图:

相当于将所有结点的父亲都直接指向根结点,这就是路径压缩。

如何用代码实现路径压缩呢?以下是具体代码:

int findFather(int x){
    if(father[x] != x) father[x] = findFather(father[x]);
    return father[x];
}

 以上代码,实现了在查询获取根结点的同时,将路径进行压缩优化,代码虽然很短,但是很巧妙,下面解释下上述代码:

 if(father[x] != x),当所查找的元素x的父亲结点不是自己,也就是x不是根结点时,

findFather(father[x]),就继续递归查找父结点,直到找到根结点为止,

father[x] = findFather(father[x]),然后将找到的根结点直接赋给x的父亲结点。

这样就实现了路径压缩,即将结点的父亲直接指向根结点。

return father[x],返回查找到的根结点。

总结

到此这篇关于C++并查集算法简单详解的文章就介绍到这了,更多相关C++并查集算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++并查集算法简单详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++如何实现并查集算法

这篇文章主要介绍了C++如何实现并查集算法,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。1、并查集的初始化并查集是用一个数组实现的。首先先定义一个数组:int father[
2023-06-29

详解C/C++高精度算法的简单实现

这篇文章主要为大家详细介绍了C/C++中高精度算法(加减乘除)的简单实现,方便以后需要时拷贝使用。感兴趣的小伙伴可以跟随小编一起了解一下
2022-12-15

Python连接SQL server数据库并进行简单查询的操作详解

这篇文章介绍了使用Python连接SQLServer数据库并执行简单查询的过程。首先,通过pyodbc模块连接数据库,然后创建游标并执行查询。最后,提取结果并打印或存储。示例代码演示了如何连接数据库并提取Customers表中的数据。文章还讨论了参数化查询、事务处理、错误处理和最佳实践等高级用法,以帮助开发者有效地与SQLServer数据库交互。
Python连接SQL server数据库并进行简单查询的操作详解
2024-04-02

【Java基础教程】(七)面向对象篇 · 第一讲:上干货!面向对象的特性、类与对象、内存结构引用分析、垃圾收集器 GC处理、封装性详解、构造方法、匿名对象、简单 Java 类~

Java基础教程之面向对象 · 第一讲 🍉 篇章介绍本节学习目标1️⃣ 面向对象的三个特性2️⃣ 类与对象2.1 基本概念2.2 定义 3️⃣ 引用分析🔍 关于`垃圾收集器 GC`处理的介绍
2023-08-19

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录