我的编程空间,编程开发者的网络收藏夹
学习永远不晚

HIVE如何统计各个区域下最热门的TOP3的商品

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

HIVE如何统计各个区域下最热门的TOP3的商品

小编给大家分享一下HIVE如何统计各个区域下最热门的TOP3的商品,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

环境:
        hadoop-2.6.0-cdh6.7.0
        hive-1.1.0-cdh6.7.0
        sqoop-1.4.6-cdh6.7.0
        MySQL5.6.39
需求:HIVE统计各个区域下最热门的TOP3的商品,将统计结果导出到MySQL中
MySQL中有:city_info 城市信息表和product_info 商品信息表
HIVE中有: user_click  用户行为日志,按date分区

一、MySQL数据库建库建表及初始化数据
    1.1 MySQL创建 ruozedata数据库:
        CREATE DATABASE ruozedata;
    1.2 创建city_info表
        DROP TABLE  if exists city_info;
        CREATE TABLE `city_info` (
         `city_id` int(11) DEFAULT NULL,
         `city_name` varchar(255) DEFAULT NULL,
         `area` varchar(255) DEFAULT NULL
        ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
        初始化city_info表数据
        insert  into `city_info`(`city_id`,`city_name`,`area`) values (1,'BEIJING','NC'),(2,'SHANGHAI','EC'),(3,'NANJING','EC'),(4,'GUANGZHOU','SC'),(5,'SANYA','SC'),(6,'WUHAN','CC'),(7,'CHANGSHA','CC'),(8,'XIAN','NW'),(9,'CHENGDU','SW'),(10,'HAERBIN','NE');

    1.3 创建product_info表
        DROP TABLE  if exists product_info;
        CREATE TABLE `product_info` (
         `product_id` int(11) DEFAULT NULL,
         `product_name` varchar(255) DEFAULT NULL,
         `extend_info` varchar(255) DEFAULT NULL
        ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
        初始化product_info表数据
        insert  into product_info(product_id,product_name,extend_info) values (1,'product1','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (2,'product2','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (3,'product3','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (4,'product4','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (5,'product5','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (6,'product6','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (7,'product7','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (8,'product8','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (9,'product9','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (10,'product10','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (11,'product11','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (12,'product12','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (13,'product13','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (14,'product14','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (15,'product15','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (16,'product16','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (17,'product17','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (18,'product18','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (19,'product19','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (20,'product20','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (21,'product21','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (22,'product22','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (23,'product23','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (24,'product24','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (25,'product25','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (26,'product26','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (27,'product27','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (28,'product28','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (29,'product29','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (30,'product30','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (31,'product31','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (32,'product32','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (33,'product33','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (34,'product34','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (35,'product35','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (36,'product36','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (37,'product37','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (38,'product38','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (39,'product39','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (40,'product40','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (41,'product41','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (42,'product42','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (43,'product43','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (44,'product44','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (45,'product45','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (46,'product46','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (47,'product47','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (48,'product48','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (49,'product49','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (50,'product50','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (51,'product51','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (52,'product52','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (53,'product53','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (54,'product54','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (55,'product55','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (56,'product56','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (57,'product57','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (58,'product58','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (59,'product59','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (60,'product60','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (61,'product61','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (62,'product62','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (63,'product63','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (64,'product64','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (65,'product65','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (66,'product66','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (67,'product67','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (68,'product68','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (69,'product69','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (70,'product70','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (71,'product71','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (72,'product72','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (73,'product73','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (74,'product74','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (75,'product75','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (76,'product76','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (77,'product77','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (78,'product78','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (79,'product79','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (80,'product80','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (81,'product81','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (82,'product82','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (83,'product83','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (84,'product84','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (85,'product85','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (86,'product86','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (87,'product87','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (88,'product88','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (89,'product89','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (90,'product90','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (91,'product91','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (92,'product92','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (93,'product93','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (94,'product94','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (95,'product95','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (96,'product96','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (97,'product97','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (98,'product98','{"product_status":1}');
        insert  into product_info(product_id,product_name,extend_info) values (99,'product99','{"product_status":0}');
        insert  into product_info(product_id,product_name,extend_info) values (100,'product100','{"product_status":1}');
        
    1.4 创建MySQL数据库产品统计表product_stat
        drop table if exists `product_stat`;
        CREATE TABLE `product_stat`(
        `product_id` int(11) DEFAULT NULL
        ,`product_name` varchar(255) DEFAULT NULL
        ,`area` varchar(255) DEFAULT NULL
        ,`click_count`  int(11)
        ,`rank`  int
        ,`days`   varchar(20) 
        ) ENGINE=InnoDB DEFAULT CHARSET=utf8
        ;

二、使用sqoop将MySQL的city_info表和product_info表的数据导入到hive(包括创建表)
        2.1 操作之前先看看hive里面的表
        hive> show databases;
        OK
        default
        hive2
        hive2_ruozedata
        ruozedata
        sqoophive
        Time taken: 0.06 seconds, Fetched: 5 row(s)
        hive> use ruozedata;
        OK
        Time taken: 0.069 seconds
        hive> show tables;
        OK
        emp_hive
        gw_test
        hive_wc
        rating_json
        ruozedata_emp
        ruozedata_emp_managed
        ruozedata_emp_partition
        ruozedata_person
        Time taken: 0.061 seconds, Fetched: 8 row(s)
        hive> 
        
    2.2 导入city_info表(从MySQL导入数据到hive的ruozedata.city_info表):
        sqoop import \
        --connect jdbc:mysql://localhost:33066/ruozedata  \
        --username root  \
        --password root  \
        --table city_info -m 1 \
        --mapreduce-job-name FromMySQLToHive \
        --delete-target-dir \
        --create-hive-table \
        --hive-table ruozedata.city_info \
        --hive-import --hive-overwrite;
        
    2.3 导入product_info表(从MySQL导入数据到hive的ruozedata.product_info表):
        sqoop import \
        --connect jdbc:mysql://localhost:33066/ruozedata  \
        --username root  \
        --password root  \
        --table product_info -m 1 \
        --mapreduce-job-name FromMySQLToHive \
        --delete-target-dir \
        --create-hive-table \
        --hive-table ruozedata.product_info \
        --hive-import --hive-overwrite;

    2.4 操作完之后再看看hive里面的表:
        hive> show tables;
        OK
        city_info
        emp_hive
        gw_test
        hive_wc
        product_info
        rating_json
        ruozedata_emp
        ruozedata_emp_managed
        ruozedata_emp_partition
        ruozedata_person
        Time taken: 0.061 seconds, Fetched: 10 row(s)
        hive> select * from city_info;
        OK
        1BEIJINGNC
        2SHANGHAIEC
        3NANJINGEC
        4GUANGZHOUSC
        5SANYASC
        6WUHANCC
        7CHANGSHACC
        8XIANNW
        9CHENGDUSW
        10HAERBINNE
        Time taken: 0.554 seconds, Fetched: 10 row(s)
        hive> select * from product_info;
        OK
        1product1{"product_status":1}
        2product2{"product_status":1}
        3product3{"product_status":1}
        4product4{"product_status":1}
        5product5{"product_status":1}
        6product6{"product_status":1}
        7product7{"product_status":1}
        8product8{"product_status":1}
        9product9{"product_status":0}
        10product10{"product_status":1}
        11product11{"product_status":0}
        12product12{"product_status":0}
        13product13{"product_status":0}
        14product14{"product_status":0}
        15product15{"product_status":1}
        16product16{"product_status":0}
        17product17{"product_status":1}
        18product18{"product_status":0}
        19product19{"product_status":1}
        20product20{"product_status":1}
        21product21{"product_status":0}
        22product22{"product_status":0}
        23product23{"product_status":0}
        24product24{"product_status":0}
        25product25{"product_status":1}
        26product26{"product_status":1}
        27product27{"product_status":0}
        28product28{"product_status":1}
        29product29{"product_status":0}
        30product30{"product_status":0}
        31product31{"product_status":0}
        32product32{"product_status":0}
        33product33{"product_status":1}
        34product34{"product_status":1}
        35product35{"product_status":0}
        36product36{"product_status":0}
        37product37{"product_status":1}
        38product38{"product_status":0}
        39product39{"product_status":0}
        40product40{"product_status":1}
        41product41{"product_status":1}
        42product42{"product_status":1}
        43product43{"product_status":1}
        44product44{"product_status":0}
        45product45{"product_status":1}
        46product46{"product_status":1}
        47product47{"product_status":0}
        48product48{"product_status":1}
        49product49{"product_status":1}
        50product50{"product_status":1}
        51product51{"product_status":1}
        52product52{"product_status":0}
        53product53{"product_status":0}
        54product54{"product_status":1}
        55product55{"product_status":0}
        56product56{"product_status":0}
        57product57{"product_status":1}
        58product58{"product_status":1}
        59product59{"product_status":1}
        60product60{"product_status":1}
        61product61{"product_status":0}
        62product62{"product_status":1}
        63product63{"product_status":1}
        64product64{"product_status":0}
        65product65{"product_status":0}
        66product66{"product_status":1}
        67product67{"product_status":1}
        68product68{"product_status":0}
        69product69{"product_status":1}
        70product70{"product_status":0}
        71product71{"product_status":0}
        72product72{"product_status":0}
        73product73{"product_status":1}
        74product74{"product_status":0}
        75product75{"product_status":1}
        76product76{"product_status":0}
        77product77{"product_status":0}
        78product78{"product_status":1}
        79product79{"product_status":0}
        80product80{"product_status":0}
        81product81{"product_status":0}
        82product82{"product_status":1}
        83product83{"product_status":1}
        84product84{"product_status":1}
        85product85{"product_status":0}
        86product86{"product_status":1}
        87product87{"product_status":1}
        88product88{"product_status":1}
        89product89{"product_status":1}
        90product90{"product_status":1}
        91product91{"product_status":1}
        92product92{"product_status":0}
        93product93{"product_status":0}
        94product94{"product_status":1}
        95product95{"product_status":0}
        96product96{"product_status":0}
        97product97{"product_status":1}
        98product98{"product_status":1}
        99product99{"product_status":0}
        100product100{"product_status":1}
        Time taken: 0.141 seconds, Fetched: 100 row(s)
        hive> 
        sqoop成功的将MySQL的city_info表和product_info表的数据导入到hive(包括创建表)

三、在hive里面对表和数据进行操作,最后在进行统计。
    3.1 创建用户行为日志表user_click分区表
        create table user_click 
        (
        user_id int
        ,session_id string
        ,action_time string
        ,city_id int
        ,product_id int
        )
        partitioned by (date string)
        ROW FORMAT DELIMITED 
        FIELDS TERMINATED BY ','
        ;  

    3.2 上传HIVE如何统计各个区域下最热门的TOP3的商品user_click.txt数据文件,并导入数据到表。
        上传user_click.txt数据文件到/home/hadoop/data 目录。
        [hadoop@hadoop002 data]$ ll
        total 62912
        -rw-rw-r--. 1 hadoop hadoop      652 Jun  4 16:34 emp.txt
        -rw-r--r--. 1 hadoop hadoop       84 Jun  7 09:53 hive_row_number.txt
        -rw-rw-r--. 1 hadoop hadoop       34 Jun 11 15:17 hive_wc.txt
        -rw-r--r--. 1 hadoop hadoop 63602280 Jun  7 09:54 rating.json
        -rw-rw-r--. 1 hadoop hadoop       67 Jun  6 18:30 student.txt
        -rwxrwxrwx. 1 hadoop hadoop   725264 Jun  9 21:28 user_click.txt
        [hadoop@hadoop002 data]$ pwd
        /home/hadoop/data
       导入数据到user_click表:
       LOAD DATA LOCAL INPATH '/home/hadoop/data/user_click.txt' OVERWRITE INTO TABLE user_click PARTITION(date='2018-06-20');
   
    3.3  在hive创建产品统计分区表product_stat,用于写入统计结果
        create table product_stat 
        (
        product_id int
        ,product_name string
        ,area string
        ,click_count int
        ,rank int
        ,days string 
        )
        partitioned by (date string)
        ROW FORMAT DELIMITED 
        FIELDS TERMINATED BY '\t'
        ;

    3.4  统计各个区域下最热门的TOP3的商品,并写入到统计表product_stat
        insert overwrite table  product_stat partition(date='2018-06-20')
        select
        t.product_id
        ,t.product_name
        ,t.area
        ,t.click_count
        ,t.rank
        ,'2018-06-20' as days
        from
        (
        select 
        ci.area  as area
        ,uc.product_id as product_id
        ,pd.product_name as product_name
        ,count(uc.product_id) as click_count
        ,(row_number() over(partition by ci.area order by count(uc.product_id) desc)) as rank
        from  city_info ci 
        left join user_click  uc on uc.city_id = ci.city_id and uc.date='2018-06-20'
        left join product_info pd on pd.product_id = uc.product_id
        group by  ci.area,uc.product_id,pd.product_name
        )t where t.rank<=3
        ;
        查询统计结果
        hive> select * from product_stat where date='2018-06-20';
        OK
        7product7CC3912018-06-202018-06-20
        26product26CC3922018-06-202018-06-20
        70product70CC3832018-06-202018-06-20
        4product4EC4012018-06-202018-06-20
        96product96EC3222018-06-202018-06-20
        99product99EC3132018-06-202018-06-20
        9product9NC1612018-06-202018-06-20
        40product40NC1622018-06-202018-06-20
        94product94NC1332018-06-202018-06-20
        NULLNULLNE012018-06-202018-06-20
        67product67NW2012018-06-202018-06-20
        56product56NW2022018-06-202018-06-20
        48product48NW1932018-06-202018-06-20
        38product38SC3512018-06-202018-06-20
        88product88SC3422018-06-202018-06-20
        33product33SC3432018-06-202018-06-20
        16product16SW2012018-06-202018-06-20
        95product95SW1922018-06-202018-06-20
        60product60SW1932018-06-202018-06-20
        Time taken: 0.345 seconds, Fetched: 19 row(s)
        hive> 


四、使用sqoop将hive的统计表product_stat数据导出到MySQL的统计表product_stat中:
        ./sqoop export \
        --connect jdbc:mysql://localhost:33066/ruozedata \
        --username root \
        --password root \
        --table product_stat \
        --export-dir /ruozedata_03/product_stat/date=2018-06-20 \
        --input-fields-terminated-by '\t' \
        --input-null-string '' --input-null-non-string 0 \
        --columns "product_id,product_name,area,click_count,rank,days" \
        --update-key product_id,area  --update-mode allowinsert \
        ; 


    去MySQL里面查看统计数据是否有成功导出:
        mysql> select * from product_stat where days='2018-06-20' order by area,rank;
        +------------+--------------+------+-------------+------+------------+
        | product_id | product_name | area | click_count | rank | days       |
        +------------+--------------+------+-------------+------+------------+
        |          7 | product7     | CC   |          39 |    1 | 2018-06-20 |
        |         26 | product26    | CC   |          39 |    2 | 2018-06-20 |
        |         70 | product70    | CC   |          38 |    3 | 2018-06-20 |
        |          4 | product4     | EC   |          40 |    1 | 2018-06-20 |
        |         96 | product96    | EC   |          32 |    2 | 2018-06-20 |
        |         99 | product99    | EC   |          31 |    3 | 2018-06-20 |
        |          9 | product9     | NC   |          16 |    1 | 2018-06-20 |
        |         40 | product40    | NC   |          16 |    2 | 2018-06-20 |
        |         94 | product94    | NC   |          13 |    3 | 2018-06-20 |
        |         67 | product67    | NW   |          20 |    1 | 2018-06-20 |
        |         56 | product56    | NW   |          20 |    2 | 2018-06-20 |
        |         48 | product48    | NW   |          19 |    3 | 2018-06-20 |
        |         38 | product38    | SC   |          35 |    1 | 2018-06-20 |
        |         88 | product88    | SC   |          34 |    2 | 2018-06-20 |
        |         33 | product33    | SC   |          34 |    3 | 2018-06-20 |
        |         16 | product16    | SW   |          20 |    1 | 2018-06-20 |
        |         95 | product95    | SW   |          19 |    2 | 2018-06-20 |
        |         60 | product60    | SW   |          19 |    3 | 2018-06-20 |
        +------------+--------------+------+-------------+------+------------+
        18 rows in set (0.00 sec)

看完了这篇文章,相信你对“HIVE如何统计各个区域下最热门的TOP3的商品”有了一定的了解,如果想了解更多相关知识,欢迎关注编程网行业资讯频道,感谢各位的阅读!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

HIVE如何统计各个区域下最热门的TOP3的商品

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

HIVE如何统计各个区域下最热门的TOP3的商品

小编给大家分享一下HIVE如何统计各个区域下最热门的TOP3的商品,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!环境: hadoop-2.6.0-cdh6.7.0 hive-1.1.0-cdh6
2023-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录