我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python数据分析之DateFrame数据排序和排名方式

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python数据分析之DateFrame数据排序和排名方式

1.数据排序

DataFrame.sort_values(by,axis=0,ascending=True,inplace=False,kind="quicksort",na_position="last",ignore_index=False)
"""
by:要排序的名称列表
axis:轴,0表示行,1表示列
ascending:升序或者降序排列,默认是True,升序
inplace:是否直接在数据上修改,True为直接修改df,False为副本
kind:指定排序算法,
na_position:空值(NaN)的位置,值为first空值在数据开头,值为last空值在数据最后。
ignore_index:布尔值,是否忽略索引,值为True标记索引(从0开始顺序的整数值),False则忽略索引
"""

2.按某列降序排序

import pandas as pd
exelFile="C:\\Users\\Administrator\\Desktop\\python数据分析Code\\Code\\03\\46\\mrbook.xlsx"
df=pd.DataFrame(pd.read_excel(exelFile))
pd.set_option('display.max_rows',1000)#设置展示最高行数
pd.set_option('display.max_columns',1000)#设置展示最高列数
pd.set_option('display.unicode.east_asian_width',True)
pd.set_option("display.unicode.ambiguous_as_wide",True)
#按“销量”列降序排序
df1=df.sort_values(by="销量",ascending=False)
print(df1)

结果如图所示:

3.按多列升降序排列

#先按照图书名称降序排列,再按照销量降序排列
df2=df.sort_values(by=["图书名称","销量"])

4.对统计结构排序

将类别分组并统计总销量降序排列。

df3=df.groupby(["类别"])["销量"].sum().reset_index()
df4=df3.sort_values(by="销量",ascending=False)
print(df4)

结构如下:

5.数据排名

DataFrame.rank(axis-0,method="average",numeric_only=None,na_option="keep",ascending=True,,pct=False)
"""
axis:轴,0表示行,1表示列
method:表示在相同值的情况下所使用的排序方法,参数如下:average:默认值,平均值排名;min:最小值排名;max:最大值排名;first:按第一次出现的顺序排列;dense:密集排序,类似于最小值排序,,但排名每次只增加1,相同排名的数据只只占据一个名词。
numeric_only:对于DataFrame,如果设置值为True,并只对数字列进行排序。
ascending:升序或者降序排列,默认值为True
pct:布尔值,是否以百分比形式返回排名,默认值为False
"""

实例:

对销量相同的产品,按照顺序排名的平均值进行平均排名

#先排序
df=df.sort_values(by="销量",ascending=False)
#按照顺序排名的平均值进行平均排名
df["顺序排名"]=df["销量"].rank(ascending=False)

这里两个数销量相同,分别为3和4名,取平均值为3.5

对销量相同的产品,按照在原表中出现的顺序进行排名

#先排序
df=df.sort_values(by="销量",ascending=False)
df["顺序排名"]=df["销量"].rank(method="first",ascending=False)

结果如下:很正常的结果

对销量相同的产品,按照顺序排名并取最小值最为排名

#先排序
df=df.sort_values(by="销量",ascending=False)
df["顺序排名"]=df["销量"].rank(method="min",ascending=False)

排名如下:相同数量的都按照最小排名填写

对销量相同的产品,按照顺序排名并取最大值最为排名

#先排序
df=df.sort_values(by="销量",ascending=False)
df["顺序排名"]=df["销量"].rank(method="max",ascending=False)

排名如下:相同数量的都按照最大排名填写

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python数据分析之DateFrame数据排序和排名方式

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python数据分析Pandas Dataframe排序操作的方法

本文小编为大家详细介绍“Python数据分析Pandas Dataframe排序操作的方法”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python数据分析Pandas Dataframe排序操作的方法”文章能帮助大家解决疑惑,下面跟着小
2023-06-30

python数据结构之选择排序

选择排序(select_sort)是一个基础排序,它主要通过查找已给序列中的元素的最大或者最小元素,然后将其放在序列的起始位置或者结束位置,并通过多次这样的循环完成对已知序列的排序,在我们对n个元素进行操作时,我们至少需要n-1次。def
2023-01-30

python数据结构之希尔排序

def shell_sort(alist): n=len(alist) gap= int(n / 2) #步长 while gap>0: for i in range(gap,n): j
2023-01-30

PHP 数组分布式排序:解决大规模数据排序的挑战

分布式排序是一种技术,通过将排序任务分配到多台机器上,显著提高大型数据集的排序性能。使用 php 的 parallel-sort 库,可以轻松实现分布式排序,其优点包括可扩展性、性能和内存效率。实现在大型电子商务网站等场景中尤为有益,可以加
PHP 数组分布式排序:解决大规模数据排序的挑战
2024-04-27

python 数据清洗之数据合并、转换、过滤、排序

前面我们用pandas做了一些基本的操作,接下来进一步了解数据的操作, 数据清洗一直是数据分析中极为重要的一个环节。 数据合并 在pandas中可以通过merge对数据进行合并操作。import numpy as np import pan
2022-06-04

C语言数据结构堆排序示例分析

今天小编给大家分享一下C语言数据结构堆排序示例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。TOP.堆排序前言什么是堆排
2023-06-30

大数据报表怎么实现对数据列进行排名分析

这篇文章跟大家分析一下“大数据报表怎么实现对数据列进行排名分析”。内容详细易懂,对“大数据报表怎么实现对数据列进行排名分析”感兴趣的朋友可以跟着小编的思路慢慢深入来阅读一下,希望阅读后能够对大家有所帮助。下面跟着小编一起深入学习“大数据报表
2023-06-03

阿里云数据库市场排名及产品分析

阿里云数据库市场排名一直是云计算领域的关注焦点。本文将对阿里云数据库市场排名进行详细分析,同时介绍其主要产品特点和优势。一、阿里云数据库市场排名根据最新的市场研究报告,阿里云数据库市场排名稳居全球前列。在全球数据库市场份额中,阿里云数据库的市场份额已超过10%,在中国市场中更是占据主导地位,市场份额超过50%。这
阿里云数据库市场排名及产品分析
2023-11-01

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录